Heat-Transfer Characteristics of Liquid Sodium in a Solar Receiver Tube with a Nonuniform Heat Flux
Abstract
:1. Introduction
2. Mathematical model
2.1. Physical Model
2.2. Governing Equations
2.3. Boundary Conditions
2.4. Numerical Methods
2.5. Parameter Definitions
3. Model Verification and Cases Studied
3.1. Model Verification
3.2. Cases Studied
4. Results and Discussion
4.1. Heat Flux
4.2. Temperature Profile
4.3. Effects of Mass Flow
4.4. Effects of Inlet Temperature
4.5. Effects of Heat Flux on the Outside Surface
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Sargent and Lundy LLC Consulting Group. Assessment of Parabolic Trough and Power Tower Solar Technology Cost and Performance Forecasts; Report No. NREL/SR-550-34440; NREL: Golden, CO, USA, 2003. [Google Scholar] [CrossRef]
- García-Barberena, J.; Monreal, A.; Mutuberria, A.; Sánchez, M. Towards cost-competitive solar towers—Energy cost reductions based on decoupled solar combined cycles (DSCC). Energy Procedia 2014, 49, 1350–1360. [Google Scholar] [CrossRef]
- Hinkley, J.; Curtin, B.; Hayward, J.; Wonhas, A.; Boyd, R.; Grima, C.; Tadros, A.; Hall, R.; Naicker, K.; Mikhail, A. Concentrating Solar Power—Drivers and Opportunities for Cost-Competitive Electricity; Report No. EP111647; CSIRO: Canberra, Australia, 2011. [Google Scholar] [CrossRef]
- Roldán, M.I.; Monterreal, R. Heat flux and temperature prediction on a volumetric receiver installed in a solar furnace. Appl. Energy 2014, 120, 65–74. [Google Scholar] [CrossRef]
- Chang, C.; Li, X.; Zhang, Q.Q. Experimental and Numerical Study of the Heat Transfer Characteristics in Solar Thermal Absorber Tubes with Circumferentially Non-uniform Heat Flux. Energy Procedia 2014, 49, 305–313. [Google Scholar] [CrossRef] [Green Version]
- Romero, M.; González-Aguilar, J. Next generation of liquid metal and other high-performance receiver designs for concentrating solar thermal (CST) central tower systems. Adv. Conc. Sol. Therm. Res. Technol. 2017, 129–154. [Google Scholar] [CrossRef]
- Siegel, N.P.; Bradshaw, R.W.; Cordaro, J.B.; Kruizenga, A.M. Thermophysical property measurement of nitrate salt heat transfer fluids. In Proceedings of the ASME 2011 5th International Conference on Energy Sustainability, Washington, DC, USA, 7–10 August 2011; pp. 439–446. [Google Scholar] [CrossRef]
- Pacio, J.; Singer, C.; Wetzel, T.; Uhlig, R. Thermodynamic evaluation of liquid metals as heat transfer fluids in concentrated solar power plants. Appl. Therm. Eng. 2013, 60, 295–302. [Google Scholar] [CrossRef]
- Kearney, D.; Herrmann, U.; Nava, P.; Kelly, B.; Mahoney, R.; Pacheco, J.; Cable, R.; Potrovitza, N.; Blake, D.; Price, H. Assessment of a molten salt heat transfer fluid in a parabolic trough solar field. J. Sol. Energy Eng. 2003, 125, 170–176. [Google Scholar] [CrossRef]
- Thomas, W.; Julio, P.; Luca, M.; Alfons, W.; Annette, H.; Wolfgang, H.; Carsten, S.; Georg, M.; Jürgen, K.; Robert, S.; et al. Liquid metal technology for concentrated solar power systems: Contributions by the German research program. AIMS Energy 2014, 2, 89–98. [Google Scholar] [CrossRef] [Green Version]
- Guidez, J.; Martin, L.; Chetal, S.; Chellapandi, P.; Raj, B. Lessons learned from sodium-cooled fast reactor operation and their ramifications for future reactors with respect to enhanced safety and reliability. Nucl. Technol. 2008, 164, 207–220. [Google Scholar] [CrossRef]
- Singer, C.; Buck, R.; Pitz-Paal, R.; Müller-Steinhagen, H. Assessment of solar power tower driven ultrasupercritical steam cycles applying tubular central receivers with varied heat transfer media. J. Sol. Energy Eng. 2010, 132, 41010. [Google Scholar] [CrossRef]
- Hering, W.; Stieglitz, R.; Wetzel, T. Application of liquid metals for solar energy systems. EPJ Web of Conferences. EDP Sci. 2012, 33, 03003. [Google Scholar] [CrossRef]
- Bienert, W.B. The heat pipe and its application to solar receivers. Electr. Power Syst. Res. 1980, 3, 111–123. [Google Scholar] [CrossRef]
- Boerema, N.; Morrison, G.; Taylor, R.; Rosengarten, G. Liquid sodium versus Hitec as a heat transfer fluid in solar thermal central receiver systems. Sol. Energy 2012, 86, 2293–2305. [Google Scholar] [CrossRef]
- Kotzé, J.P.; von Backström, T.W.; Erens, P.J. NaK as a primary heat transfer fluid in thermal solar power installations. In Proceedings of the SolarPACES 2012 International Conference, Durban, South Africa, 27–29 March 2014. [Google Scholar]
- Amy, C.; Budenstein, D.; Bagepalli, M.; England, D.; Deangelis, F.; Wilk, G.; Jarrett, C.; Kelsall, C.; Hirschey, J.; Wen, H.; et al. Pumping liquid metal at high temperatures up to 1,673 kelvin. Nature 2017, 550, 199–203. [Google Scholar] [CrossRef] [PubMed]
- DeAngelis, F.; Seyf, H.R.; Berman, R.; Schmidt, G.; Moore, D.; Henry, A. Design of a high temperature (1350 °C) solar receiver based on a liquid metal heat transfer fluid: Sensitivity analysis. Sol. Energy 2018, 164, 200–209. [Google Scholar] [CrossRef]
- Pacio, J.; Wetzel, T. Assessment of liquid metal technology status and research paths for their use as efficient heat transfer fluids in solar central receiver systems. Sol. Energy 2013, 93, 11–22. [Google Scholar] [CrossRef]
- Pacio, J.; Fritsch, A.; Singer, C.; Uhlig, R. Liquid metals as efficient coolants for high-intensity point-focus receivers: Implications to the design and performance of next-generation CSP systems. Energy Procedia 2014, 49, 647–655. [Google Scholar] [CrossRef]
- Matsubara, K.; Sakurai, A.; Miura, T.; Kawabata, T. Spanwise heat transport in turbulent channel flow with Prandtl numbers ranging from 0.025 to 5.0. J. Heat Transf. 2012, 134, 041701. [Google Scholar] [CrossRef]
- Flores, O.; Marugán-Cruz, C.; Santana, D.; Garcia-Villalba, M. Thermal stresses analysis of a circular tube in a central receiver. Int. Conf. Sol. PACES 2014, 49, 354–362. [Google Scholar] [CrossRef]
- Rodríguez-Sánchez, M.; Venegas-Bernal, M.; Marugán-Cruz, C.; Santana, D. Thermal, mechanical and hydrodynamic analysis to optimize the design of molten salt central receivers of solar tower power plants. In Proceedings of the International Conference on Renewable Energies and Power Quality (ICREPQ’13), Bilbao, Spain, 20–22 March 2013; pp. 128–133. [Google Scholar] [CrossRef]
- Irfan, M.A.; Chapman, W. Thermal stresses in radiant tubes due to axial, circumferential and radial temperature distributions. Appl. Therm. Eng. 2009, 29, 1913–1920. [Google Scholar] [CrossRef]
- Fritsch, A.; Uhlig, R.; Marocco, L.; Frantz, C.; Flesch, R.; Hoffschmidt, B. A comparison between transient CFD and FEM simulations of solar central receiver tubes using molten salt and liquid metals. Sol. Energy 2017, 155, 259–266. [Google Scholar] [CrossRef]
- Flesch, J.; Niedermeier, K.; Fritsch, A.; Musaeva, D.; Marocco, L.; Uhlig, R.; Baake, E.; Buck, R.; Wetzel, T. Liquid metals for solar power systems. IOP Conf. Ser. Mater. Sci. Eng. 2017, 228, 012012. [Google Scholar] [CrossRef] [Green Version]
- Gartshore, I.; Salcudean, M.; Hassan, I. Film cooling injection hole geometry: Hole shape comparison for compound cooling orientation. AIAA J. 2015, 39, 1493–1499. [Google Scholar] [CrossRef]
- Rodríguez-Sánchez, M.R.; Soria-Verdugo, A.; Almendros-Ibáñez, J.A.; Acosta-Ibáñez, A.; Santana, D. Thermal design guidelines of solar power towers. Appl. Therm. Eng. 2014, 63, 428–438. [Google Scholar] [CrossRef]
- Patankar, S. Numerical Heat Transfer and Fluid Flow; Hemisphere Publishing: Washington, DC, USA, 1980. [Google Scholar]
- Mikityuk, K. Heat transfer to liquid metal: Review of data and correlations for tube bundles. Nucl. Eng. Des. 2009, 239, 680–687. [Google Scholar] [CrossRef]
- Minkowycz, W.J.; Sparrow, E.M.; Murthy, J.Y. Handbook of Numerical Heat Transfer, 2nd ed.; John Wiley & Sons: New York, NY, USA, 2000. [Google Scholar]
- Wu, M.; Li, M.; Xu, C.; He, Y.L.; Tao, W.Q. The impact of concrete structure on the thermal performance of the dual-media thermocline thermal storage tank using concrete as the solid medium. Appl. Energy 2014, 113, 1363–1371. [Google Scholar] [CrossRef]
- He, Y.L.; Tao, W.Q. Convective heat transfer enhancement: Mechanisms, techniques, and performance evaluation. Adv. Heat Transf. 2014, 46, 87–186. [Google Scholar] [CrossRef]
- Gnielinski, V. New equations for heat and mass transfer in turbulent pipe and channel flow. Int. Chem. Eng. 1976, 16, 8–16. [Google Scholar]
- Zavoico, A.B. Solar Power Tower Design Basis Document, Revision 0; Report of Sandia National Laboratories: San Francisco, CA, USA, 2001. [Google Scholar] [CrossRef]
- Foust, O.J. Sodium-NaK Engineering Handbook; Gordon and Breach Science Publishers: New York, NY, USA, 1972; pp. 32–38. [Google Scholar]
- VDI-Gesellschaft Verfahrenstechnik und Chemieingenieurwesen (GVC). VDI Heat Atlas, 2nd. ed.; Springer: Berlin, Germany, 2010. [Google Scholar]
- Vant-Hull, L.L. The role of “allowable flux density” in the design and operation of molten-salt solar central receivers. J. Sol. Energy Eng. 2002, 124, 165–169. [Google Scholar] [CrossRef]
- Liao, Z.; Li, X.; Xu, C.; Chang, C.; Wang, Z. Allowable flux density on a solar central receiver. Renew. Energ. 2014, 62, 747–753. [Google Scholar] [CrossRef]
HTFs | Thermophysical Properties | Property Equation |
---|---|---|
Liquid sodium 371 °K–1255 °K | ρ/kg·m−3 | 219 + 275.32(1 − T/2503.7) + 511.58(1 − T/2503.7)0.5 |
λ/W·m−1·K−1 | 124.67 − 0.11381·T + 5.5226 × 10−5·T2 − 1.1842 × 10−8·T3 | |
cp/J·kg−1·K−1 | 1658.2 − 0.84790·T + 4.4541 × 10−4·T2 −2.9926 × 106·T−2 | |
μ/Pa·s | ln (T) = −6.4406 − 0.3958ln(T) + 556.835/T | |
Solar salt 533 °K–873 °K | ρ/kg·m−3 | 2090 − 0.636(T − 273.15) |
λ/W·m−1·K−1 | 0.443 + 1.9 × 10−4(T − 273.15) | |
cp/J·kg−1·K−1 | 1443 + 0.172(T − 273.15) | |
μ/Pa·s | 2.2714 × 10−2 − 1.2 × 10−4(T − 273.15) + 2.281 × 10−7(T − 273.15)2 − 1.474 × 10−10(T − 273.15)3 | |
Hitec 415 °K–808 °K | ρ/kg·m−3 | −0.74(T − 273.15) + 2084 |
λ/W·m−1·K−1 | 0.411 + 4.36 × 10−4(T − 273.15) + 1.54 × 10−6 (T − 273.15)2 | |
cp/J·kg−1·K−1 | 1560 − (T − 273.15) | |
μ/Pa·s | 102.7374 (T − 273.15)−2.104 |
Test Condition | HTFs | Qm (kg/s) | Tin (°K) | qomax (MW/m2) | h (W/m2 K) |
---|---|---|---|---|---|
Case1 | Sodium S-S Hitec | 1.0~3.0 | 550 | 0.1 | 2989~14,089 |
2105~7318 | |||||
2526~7947 | |||||
Case2 | Sodium S-S Hitec | 1.0 | 550~800 | 0.1 | 23,822~21,520 |
4859~10,107 | |||||
6047~11,664 | |||||
Case3 | Sodium S-S Hitec | 1.0 | 550 | 0.1~0.3 | 75,960~75,753 |
5502~5581 | |||||
6047~6167 |
Candidate HTF | m.p °K | n.b.p °K | ρCp kJ/m3·°K |
---|---|---|---|
Sodium | 371 | 1255 | 1166 |
Solar salt | 533 | 873 | 2498 |
Hitec | 415 | 808 | 2411 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; He, Y.; Lei, X. Heat-Transfer Characteristics of Liquid Sodium in a Solar Receiver Tube with a Nonuniform Heat Flux. Energies 2019, 12, 1432. https://doi.org/10.3390/en12081432
Liu J, He Y, Lei X. Heat-Transfer Characteristics of Liquid Sodium in a Solar Receiver Tube with a Nonuniform Heat Flux. Energies. 2019; 12(8):1432. https://doi.org/10.3390/en12081432
Chicago/Turabian StyleLiu, Jing, Yongqing He, and Xianliang Lei. 2019. "Heat-Transfer Characteristics of Liquid Sodium in a Solar Receiver Tube with a Nonuniform Heat Flux" Energies 12, no. 8: 1432. https://doi.org/10.3390/en12081432
APA StyleLiu, J., He, Y., & Lei, X. (2019). Heat-Transfer Characteristics of Liquid Sodium in a Solar Receiver Tube with a Nonuniform Heat Flux. Energies, 12(8), 1432. https://doi.org/10.3390/en12081432