Transboundary Exchanges of Renewable Energy and Desalinated Water in the Middle East
Abstract
:1. Introduction and Study Rationale
2. Literature Review
- −
- Economic barriers, such as high initial capital costs, unfavorable power pricing rules, subsidies for competing fuels, transaction costs, etc.
- −
- Legal and regulatory barriers, such as lack of legal framework for independent power producers, network interconnection requirements and non-discriminatory transmission access
- −
3. Water, Energy and Land in the Study Area
3.1. Water
3.2. Energy
3.3. Regional Integration of Water and Energy Supplies
3.4. Open Spaces
4. Methodology
4.1. Determining Desalination Production Scale
4.2. Determining Energy Production Scales
4.3. Choice of Renewable Technologies
4.4. Choice of Location of Energy Production
4.5. Modeling Energy Outputs
4.6. Economic Assessment
5. Results
5.1. Technical Analysis
5.2. Economic Analysis
5.2.1. Renewable Energy Production Costs
5.2.2. Balancing Water and Electricity Costs
5.2.3. Renewable versus Fossil Fuels
6. Geopolitical Considerations and Implications
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Katz, D.; Shafran, A. (Eds.) A Pre-feasibility study for mid-East water-renewable energy exchanges. In Water Energy Nexus; EcoPeace Middle East/Konrad-Adenauer-Stiftung: Amman, Jordan, 2017; Available online: http://ecopeaceme.org/wp-content/uploads/2018/03/WEN_Full_Study_Final_Web.pdf (accessed on 26 March 2018).
- Shahzad, M.W.; Burhan, M.; Li, A.; Kim, C.N. Energy-water-environment nexus underpinning future desalination sustainability. Eng. Adv. 2017, 413, 52–64. [Google Scholar] [CrossRef]
- Mittelman, G.; Ornit, M.; Abraham, D. Large-scale solar thermal desalination plants: A review. Heat Transf. Eng. 2007, 28, 924–930. [Google Scholar] [CrossRef]
- Ghermandi, A.; Rami, M. Solar-driven desalination with reverse osmosis: The state of the art. Desalin. Water Treat. 2009, 7, 285–296. [Google Scholar] [CrossRef]
- Li, C.; Yogi, G.; Elias, S. Solar assisted sea water desalination: A review. Renew. Sustain. Energy Rev. 2013, 19, 136–163. [Google Scholar] [CrossRef]
- Sharon, H.; Reddy, K.S. A review of solar energy driven desalination technologies. Renew. Sustain. Energy Rev. 2015, 41, 1080–1118. [Google Scholar] [CrossRef]
- Pugsley, A.; Zacharopoulos, J.; Mondol, D.; Smyth, M. Global applicability of solar desalination. Renew. Energy 2016, 88, 200–219. [Google Scholar] [CrossRef]
- Darwish, M.A.; Abdulrahim, H.K.; Hassan, A.S.; Mabrouk, A.A. PV and CSP solar technologies & desalination: Economic analysis. Desalin. Water Treat. 2016, 57, 16679–16702. [Google Scholar]
- Alkaisi, A.; Mossad, R.; Barforoush, A.S. A Review of the water desalination systems integrated with renewable energy. In Proceedings of the 1st International Conference on Energy and Power, ICEP2016, RMIT University, Melbourne, Australia, 14–16 December 2016; pp. 268–274. [Google Scholar] [CrossRef]
- Griffiths, S. A review and assessment of energy policy in the Middle East and North Africa region. Energy Policy 2017, 102, 249–269. [Google Scholar] [CrossRef]
- Abu-Jabal, M.; Karniyab, I.; Namsakib, Y. Proving test for a solar-powered desalination system in Gaza-Palestine. Desalination 2001, 137, 1–4. [Google Scholar] [CrossRef]
- Sagie, D.; Feinerman, E.; Aharonl, E. Potential of solar desalination in Israel and in its close vicinity. Desalination 2001, 139, 21–33. [Google Scholar] [CrossRef]
- Vardimon, R. Assessment of the potential for distributed photovoltaic electricity production in Israel. Renew. Energy 2011, 3, 591–594. [Google Scholar] [CrossRef]
- Fthenakis, V.; Morin, O.A.; Atia, A.; Bkayrat, R.; Sinha, P. New prospects for PV powered water desalination plants: Case studies in Saudi Arabia. Prog. Photovolt. Res. App. 2016, 24, 543–550. [Google Scholar] [CrossRef]
- Ali-Karaghouli, A.; Kazmerski, L.L. Energy consumption and water production cost of conventional and renewable-energy–powered desalination processes. Renew. Sustain. Energy Rev. 2013, 24, 343–356. [Google Scholar] [CrossRef]
- Delgado-Torres, A.; Garcia-Rodriguez, L. Preliminary assessment of solar organic rankine cycles for driving a desalination system. Desalination 2007, 216, 252–275. [Google Scholar] [CrossRef]
- Penate, B.; Garcia-Rodriguez, L. Seawater reverse osmosis desalination driven by a solar organic rankine cycle: Design and technology assessment for medium capacity range. Desalination 2012, 284, 86–91. [Google Scholar] [CrossRef]
- Wellmann, J.; Meyer-Kahlen, B.; Morosuk, T. Exergoeconomic evaluation of a CSP plant in combination with a desalination unit. Renew. Energy 2018, 128, 586–602. [Google Scholar] [CrossRef]
- Olwig, R.; Hirsch, T.; Sattler, C.; Glade, H.; Schmeken, L.; Will, S.; Ghermandi, A.; Messalem, R. Techno-economic analysis of combined concentrating solar power and desalination plant configurations in Israel and Jordan. Desalin. Water Treat. 2012, 41, 9–25. [Google Scholar] [CrossRef]
- Elkarmi, F.; Abu Shikhah, N. Power System Planning Technologies and Applications: Concepts, Solutions and Management; IGI Global Publishing: Hershey, PA, USA, 2012. [Google Scholar]
- Abu-Shikhah, N.; Hiasat, M.A.A.; Al-Rabadi, W.J. A photovoltaic proposed generation promotion policy—The case of Jordan. Energy Policy 2012, 49, 154–163. [Google Scholar] [CrossRef]
- Allan, J.A.; Malkawi, A.I.H.; Tsur, Y. Red Sea–Dead Sea Water Conveyance Study Program Study of Alternatives. In Preliminary Draft Report; Executive Summary and Main Report; The World Bank Group: Washington, DC, USA, 2014; Available online: http://siteresources.worldbank.org/EXTREDSEADEADSEA/Resources/5174616-1416839444345/SoA-FINAL_March_2014.pdf (accessed on 22 April 2017).
- Falkenmark, M.; Lindh, G. Water for a Starving World; Westview Press: Boulder, CO, USA, 1976. [Google Scholar]
- Alpert, P.; Krichak, S.O.; Shafir, H.; Haim, D.; Osetinsky, I. Climatic trends to extremes employing regional modeling and statistical interpretation over the E. Mediterranean. Glob. Planet. Chang. 2008, 63, 163–170. [Google Scholar] [CrossRef]
- Paz, S.; Kutiel, H. Rainfall regime uncertainty (RRU) in an Eastern Mediterranean region—A methodological approach. Israel J. Earth Sci. 2003, 52, 47–63. [Google Scholar] [CrossRef]
- The World Bank. Climate Change Knowledge Portal. 2018. Available online: https://climateknowledgeportal.worldbank.org/region/middle-east/climate-data-historical (accessed on 2 August 2018).
- Israeli Water Authority. Allocation, Consumption and Production Data. 2018. Available online: http://www.water.gov.il/Hebrew/ProfessionalInfoAndData/Allocation-Consumption-and-production/Pages/default.aspx (accessed on 20 April 2018). (In Hebrew)
- Office of the Quartet. Report on the Activities of the Office, January 2016–June 2017. 2017. Available online: http://www.quartetoffice.org/files/Annual%20report%202017.pdf (accessed on 26 September 2017).
- Israeli Water Authority. Long-Term Master Plan for the National Part A—Policy Document Version; Israeli Water Authority: Tel Aviv, Israel, 2012.
- Cohen, O. Jordan Won’t Budge on Red Sea-Dead Sea Project—and Israel Will Pay the Price. Haaretz, 29 January 2019. [Google Scholar]
- El-Katiri, L. A Roadmap for Renewable Energy in the Middle East and North Africa; Oxford Institute for Energy Studies: Oxford, UK, 2014. [Google Scholar]
- Energy Balance of Israel (detailed by products). 2016. Available online: http://www.cbs.gov.il/reader/?MIval=%2Fcw_usr_view_SHTML&ID=564 (accessed on 8 September 2017).
- Younan, M.; Popper, E. Regional Cooperation in Energy. In The Arab Peace Initiative and Israeli-Palestinian Peace; Arnon, A., Bamya, S., Eds.; Aix Group, Aix-Marseille University: Palestine, Israel, 2012; pp. 300–359. [Google Scholar]
- BBC. New Attack on Egypt Gas Pipeline to Israel and Jordan. Available online: https://www.bbc.com/news/world-middle-east-15670301 (accessed on 10 November 2011).
- World Bank. Renewable Electricity Share of Total Electricity Output (%). From Database: Sustainable Energy for All. 2018. Available online: https://databank.worldbank.org/data/source/sustainable-energy-for-all# (accessed on 30 December 2018).
- RCREEE—Regional Center for Renewable Energy and Energy Efficiency. Arab Future Energy Index (AFEX)—Renewable Energy. Palestine Country Profile. 2015. Available online: http://www.rcreee.org/sites/default/files/palestine_fact_sheet_print.pdf (accessed on 16 August 2017).
- International Renewable Energy Agency (IRENA). Pan-Arab Renewable Energy Strategy 2030. 2014. Available online: https://www. irena.org/DocumentDownloads/Publications/IRENA_Pan-Arab_Strategy_June (accessed on 2 April 2017).
- Regional Center for Renewable Energy and Energy Efficiency (RCREEE). Arab Future Energy Index (AFEX) 2015—Renewable Energy. 2015. Available online: http://www.rcreee.org/content/AFEXRE2015 (accessed on 16 August 2017).
- Israeli Ministry of National Infrastructures. Israel’s Fuel Economy. 2017. Available online: http://energy.gov.il/English/Subjects/Subject/Pages/GxmsMniIsraelsFuelEconomy.aspx (accessed on 17 August 2018).
- Israeli Ministry of Environmental Protection. Israel Commits to Reducing GHG Emissions 26% by 2030. 2015. Available online: http://www.sviva.gov.il/English/ResourcesandServices/NewsAndEvents/NewsAndMessageDover/Pages/2015/Oct-10/Israel-Commits-to-Reducing-GHG-Emissions-26-percent-by-2030.aspx#GovXParagraphTitle1 (accessed on 14 January 2017).
- Fischhendler, I.; Herman, L.; Anderman, J. The geopolitics of cross-border electricity grids: The Israeli-Arab case. Energy Policy 2016, 98, 533–543. [Google Scholar] [CrossRef]
- United Nations. World Population Prospects: The 2017 Revision; United Nations, Department of Economic and Social Affairs, Population Division: New York, NY, USA, 2017. [Google Scholar]
- Department of Statistics. Population Projections for Kingdom for the Period 2015–2050. 2016. Available online: http://www.cbs.gov.il/www/hodaot2013n/01_13_170t1.pdf (accessed on 22 April 2017). (In Arabic)
- State of Palestine—Prime Minister’s Office of Population & UNFPA. Palestine 2030. 2016. Available online: http://palestine.unfpa.org/publications/palestine-2030-demographic-change-opportunities-development (accessed on 20 April 2017).
- Central Bureau of Statistics. Statistical Abstract of Israel. 2013. Available online: https://www.cbs.gov.il/en/publications/Pages/2013/Statistical-Abstract-of-Israel-2013-No64.aspx (accessed on 2 August 2017).
- United Nations. Demographic Yearbook. 2015. Available online: https://unstats.un.org/unsd/demographic/products/dyb/dybsets/2015.pdf (accessed on 2 August 2017).
- ESRI. World Population Density. 2012. Available online: https://www.arcgis.com/home/item.html?id=1cdb43e39401461397f05c600c7e22a8 (accessed on 2 August 2017).
- Katz, D. Undermining demand management with supply management: Moral hazard in Israeli water policies. Water 2016, 8, 159. [Google Scholar] [CrossRef]
- German Aerospace Center (DLR) Institute of Technical Thermodynamics, Section Systems Analysis and Technology Assessment. Concentrating Solar Power for the Mediterranean Region—Final Report. Study commissioned by Federal Ministry for the Environment, Nature Conservation and Nuclear Safety Germany. 2005. Available online: https://www.dlr.de/tt/Portaldata/41/Resources/dokumente/institut/system/publications/MED-CSP_complete_study-small.pdf (accessed on 5 May 2017).
- Hashemite Kingdom of Jordan. National Water Strategy 2016–2025; Ministry of water and Irrigation: Dodoma, Tanzania, 2015.
- Palestinian Central Bureau of Statistics. 2016. Available online: http://www.pcbs.gov.ps/Portals/_Rainbow/Documents/water/water-E-main.htm (accessed on 2 August 2017).
- Israel Water Authority. 2016. Available online: http://water.gov.il/Hebrew/ProfessionalInfoAndData/Allocation-Consumption-and-production/20156/1998-2015.xls (accessed on 16 August 2017).
- Hoffman, D. Potential for energy savings in the Israeli water sector. Water Eng. 2014, 91, 27–34. (In Hebrew) [Google Scholar]
- NEPCO. Available online: http://www.nepco.com.jo/store/docs/web/2015_en.pdf (accessed on 16 August 2017).
- Palestinian Energy and Natural Resources Authority. Available online: http://www.pcbs.gov.ps/Portals/_Rainbow/Documents/Energy-2015-06-e.htm (accessed on 17 August 2017).
- Israeli Ministry of Energy & Water. Available online: http://energy.gov.il/Subjects/Electricity/Pages/GxmsMniAboutElectricity.aspx (accessed on 16 August 2017).
- Mohsen, M.S.; Akash, B.A. Potentials of wind energy development for water pumping in Jordan. Renew. Energy 1998, 14, 441–446. [Google Scholar] [CrossRef]
- Greenpeace. Jordan’s Renewable Energy Future. 2013. Available online: http://www.greenpeace.org/arabic/PageFiles/481146/Jordan_Report2013.pdf (accessed on 26 December 2017).
- Joskow, P.L. Comparing the costs of intermittent and dispatchable electricity generating technologies. Am. Econ. Rev. 2011, 101, 238–241. [Google Scholar] [CrossRef]
- First Solar Series 4 PV Module Datasheet. Available online: http://www.firstsolar.com/-/media/First-Solar/Technical-Documents/Series-4-Datasheets/Series-4V3-Module-Datasheet.ashx (accessed on 26 March 2017).
- NASA Atmospheric Science Data Center. Available online: https://eosweb.larc.nasa.gov/cgi-bin/sse/[email protected] (accessed on 26 March 2017).
- Azzam, S. Renewable Energy in Jordan—Desalination of Brackish Water by Solar Energy; National Center for Research and Development: Amman, Jordan, 2013.
- World Bank and Solargis. Solar resource maps of Jordan. 2017. Available online: https://solargis.com/maps-and-gis-data/download/jordan/ (accessed on 26 March 2017).
- IRENA. Renewable Energy Cost Analysis: Solar Photovoltaics. 2014. Available online: https://www.irena.org/DocumentDownloads/Publications/IRENA_RE_Power_Costs_2014_report.pdf (accessed on 22 April 2017).
- Al-omary, M.; Kaltschmitt, M.; Becker, C. Electricity system in Jordan: Status & prospects. Renew. Sustain. Energy Rev. 2018, 81, 2398–2409. [Google Scholar]
- Jordanian Ministry of Energy and Mineral Resources (MEMR) Annual Report. Available online: http://www.memr.gov.jo/echobusv3.0/SystemAssets/505997da-c229-4f65-8139-9ae8e45b0c78.pdf (accessed on 26 September 2017).
- HOMER-Pro. 2017. Available online: https://www.homerenergy.com/products/index.html (accessed on 5 May 2017).
- PVsyst 2017. Available online: http://www.pvsyst.com/en/ (accessed on 5 May 2017).
- Hoffman, D. Seawater Desalination and Applications; Israel Water Authority: Tel Aviv, Israel, 2014.
- NREL. Crest—Cost of Energy Models. 2017. Available online: https://financere.nrel.gov/finance/content/crest-cost-energy-models (accessed on 26 March 2017).
- IRENA. Renewable Energy Cost Analysis: Concentrating Solar Power. 2014. Available online: https://www.irena.org/DocumentDownloads/Publications/RE_Technologies_Cost_Analysis-CSP.pdf (accessed on 26 March 2017).
- IRENA. Renewable Power Generation Costs in 2017; International Renewable Energy Agency: Abu Dhabi, UAE, 2018. [Google Scholar]
- Ong, S.; Clinton, C.; Denholm, P.; Margolis, R.; Heath, G. Land-Use Requirements for Solar Power Plants in the United States; National Renewable Energy Laboratory (NREL): Golden, CO, USA, 2013. Available online: http://www.qualenergia.it/sites/default/files/articolo-doc/Studio_NREL_FV_e_consumo_suolo.pdf (accessed on 20 April 2017).
- Bundokji, M.; Field Officer, Ecopeace Middle East, Amman Jordan. Personal Communication, 2017.
- Lichtman, M. Land for solar farms to cost NIS 60-100,000 per acre. Globes, 17 January 2017. Available online: https://en.globes.co.il/en/article-solar-farmland-to-cost-nis-60-100000-per-acre-1001172472(accessed on 16 August 2017).
- National Renewable Energy Laboratory of the U.S. Department of Energy. LCOE Calculator. 2017. Available online: https://www.nrel.gov/analysis/tech_lcoe.html (accessed on 26 March 2017).
- National Renewable Energy Laboratory of the U.S. Department of Energy. Cost of Renewable Energy Spreadsheet Tool (CREST). 2017. Available online: https://financere.nrel.gov/finance/content/crest-cost-energy-models (accessed on 26 March 2017).
- Trieb, F.; Schillings, C.; O’Sullivan, M.; Pregger, T.; Hoyer-Klick, C. Global Potential of Concentrating Solar Power. German Aerospace Center, Institute of Technical Thermodynamics, 2009. Available online: https://www.solarthermalworld.org/sites/gstec/files/global%20potential%20csp.pdf (accessed on 22 April 2017).
- National Renewable Energy Laboratory (NREL). Life Cycle Greenhouse Gas Emissions from Solar Photovoltaics. 2013. Available online: http://www.nrel.gov/docs/fy13osti/56487.pdf (accessed on 26 March 2017).
- DCE. Solar Energy Production in Motion the Advantages of Single-Axis Solar Tracking Systems. Available online: http://www.dcesolar.com/docs/Single-Axis-Tracking-Systems.pdf (accessed on 5 May 2017).
- Khashman, A. Uncertainty and challenges in Jordan’s Round 3 RE auction. PV Magazine, 7 September 2018. [Google Scholar]
- Zawati, H. Renewable energy on rise in resource-poor Jordan. Available online: https://news.yahoo.com/renewable-energy-rise-poor-jordan-014335322.html (accessed on 28 September 2018).
- Bellini, E. UPDATE: ACWA offered lowest bid in Egypt’s 200 MW tender. PV Magazine, 8 August 2018. [Google Scholar]
- Gorodeisky, S. Trying to close the gap: New Tender for solar electricity production. Globes, 2018. Available online: https://www.globes.co.il/news/article.aspx?did=1001261432(accessed on 20 November 2018). (In Hebrew)
- IRENA. Electricity Storage. Technology Brief. Electricity storage and renewables: Costs and Markets to 2030. 2017. Available online: https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2017/Oct/IRENA_Electricity_Storage_Costs_2017.pdf (accessed on 30 December 2018).
- Jordan Times. Grid’s technical challenges’ prompt freeze in green energy projects. Jordan Times, 29 January 2019. [Google Scholar]
- US EIA. Revenue and expense statistics for major U.S. investor-owned electric utilities. 2017. Available online: https://www.eia.gov/electricity/annual/html/epa_08_03.html (accessed on 26 September 2017).
- Power Technology. Tzafit Gas Fired Power Plant. Available online: https://www.power-technology.com/projects/tzafit-gas-fired-power-plant/ (accessed on 4 July 2017).
- Ministry of Environmental Protection (Israel). Environmental Externality Costs from Air Pollution. Available online: http://www.sviva.gov.il/subjectsEnv/SvivaAir/Pages/AirExternalCost.aspx (accessed on 14 May 2017). (In Hebrew)
- Varun, I.K.B.; Prakash, R. LCA of renewable energy for electricity generation systems—A Review. Renew. Sustain. Energy Rev. 2009, 13, 1067–1673. [Google Scholar] [CrossRef]
- Fischhendler, I.; Dinar, S.; Katz, D. Spatial and temporal politics of unilateral environmentalism: Cooperation and conflict over water management along the Israeli-Palestinian border. Global Environ. Politics 2011, 11, 36–61. [Google Scholar] [CrossRef]
- Fischhendler, I.; Zilberman, D. Packaging policies to reform the water sector: The case of the central valley project improvement act. Water Resource Res. 2005, 41. [Google Scholar] [CrossRef]
- Katz, D.; Fischhendler, I. Spatial and temporal dynamics of linkage strategies in Arab–Israeli water negotiations. Polit. Geogr. 2011, 30, 13–24. [Google Scholar] [CrossRef]
- Rubinovitz, Z.; Rettig, E. Crude peace: The role of oil trade in the Israeli-Egyptian peace negotiations. Int. Stud. Q. 2018, 62, 371–382. [Google Scholar] [CrossRef]
Territory | Population Estimates (Millions) | Population Density (Persons per Km2) | ||
---|---|---|---|---|
2015 | 2030 Forecast | 2015 | 2030 Forecast | |
The PA | 4.7 | 6.9 | 775 | 1124 |
Israel | 8.3 | 10.6 | 409 | 481 |
Jordan | 9.4 | 12.0 | 103 | 134 |
Total | 22.4 | 29.5 |
2015 Municipal Supply (mcm) | 2015 Per Capita Consumption (m3/y) | Declared Overdrafts from Renewable Sources (mcm) | 2030 Population (Millions) | 2030 Municipal Supply Needed (mcm) | Additional Water Needed (mcm) | |
---|---|---|---|---|---|---|
Jordan | 436 | 46.4 | 160 | 12.0 | 556.6 | 280.6 |
The PA | 214.9 | 47.9 | 107.2 | 6.9 | 330.5 | 222.8 |
Israel | 777.8 | 93.7 | 0 | 10.6 | 848 | 70.2 |
TOTAL | 1428.7 | 76.3 | 267.2 | 29.5 | 1735.1 | 573.6 |
Project Scale | ||
---|---|---|
Parameter | Lower Bound | Upper Bound |
Input | ||
Energy generation (GWh) | 3100 | 34,800 |
Solar panel yield (%) | 17 | 17 |
Global horizontal irradiation (daily inputs) (total kWh/m2/year) | 2000 | 2000 |
Performance ratio, coefficient for losses (Estimated according to the theoretical works [73,78,79,80].) | 0.9 | 0.9 |
Output fixed at 290 tilt | ||
Annual average irradiation on titled panels (kWh/m2/year) | 2200 | 2200 |
Total installed capacity of the system (MWAC) | 1600 | 17,600 |
The area of land required (km2) | 9.4 | 104.5 |
Capacity factor (%) | 22.4 | 22.4 |
Output one-axis tracking | ||
Annual average irradiation on tracking panels (kWh/m2/year) | 2700 | 2700 |
Total installed capacity of the system (MWAC) | 1400 | 15,600 |
The area of land required (km2) | 8.3 | 92 |
Capacity factor (%) | 25.5 | 25.5 |
Project Scale | ||
---|---|---|
Parameter | Lower Bound | Upper Bound |
Input | ||
Energy generation (GWh) | 3100 | 34,800 |
Annual efficiency (trough) (%) | 15 | 15 |
Annual efficiency (tower) (%) | 20 | 20 |
Annual average insolation (kWh/m2) | 2500 | 2500 |
Output | ||
Total installed generator capacity (MWAC) | 1400 | 15,900 |
Trough | ||
The area of land required SM1 (km2) | 8.3 | 93 |
The area of land required SM2 (km2) | 16.6 | 185.8 |
Tower | ||
Total installed generator capacity (MWAC) | 900 | 9900 |
The area of land required SM1 (km2) | 6.3 | 70 |
The area of land required SM2 (km2) | 12.5 | 139.4 |
PV | CSP | |||||
---|---|---|---|---|---|---|
Tilt Panels | One-Axis Tracking | Tower, No Storage | Tower, w/Storage | Trough, No Storage | Trough, w/Storage | |
Scenario 1 | ||||||
Installed generator capacity, MW | 1585 | 1395 | 1420 | 888 | 1420 | 888 |
CAPEX, low estimate, million US$ | 1585 | 1534 | 8515 | 5765 | 5677 | 6032 |
CAPEX, high estimate, million US$ | 2377 | 2231 | 9935 | 7983 | 10,644 | 8870 |
Land use cost (annual), million US$ | 1.6 | 1.4 | 1.1 | 2.1 | 1.4 | 2.8 |
Land use cost (rent for all period), million US$ (undiscounted) | 39.5 | 34.9 | 26.5 | 52.5 | 34.9 | 69.7 |
Land use cost (rent for all period), million US$ (5% discount rate) | 23.4 | 20.6 | 15.7 | 31.1 | 20.6 | 41.3 |
Scenario 2 | ||||||
Installed generator capacity, MW | 17,760 | 15,629 | 15,905 | 9941 | 15,905 | 9941 |
CAPEX, low estimate, million US$ | 17,760 | 17,191 | 95,425 | 64,610 | 63,616 | 67,592 |
CAPEX, high estimate, million US$ | 26,640 | 25,006 | 111,329 | 89,461 | 119,281 | 99,401 |
Land use cost (annual), million US$ | 17.6 | 15.5 | 11.7 | 23.4 | 15.6 | 31.2 |
Land use cost (rent for all period), million US$ (undiscounted) | 438.9 | 386.4 | 292.7 | 585.5 | 390.1 | 780.4 |
Land use cost (rent for all period), US$ million (5% discount rate) | 259.8 | 228.7 | 173.3 | 346.6 | 231.0 | 461.9 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Katz, D.; Shafran, A. Transboundary Exchanges of Renewable Energy and Desalinated Water in the Middle East. Energies 2019, 12, 1455. https://doi.org/10.3390/en12081455
Katz D, Shafran A. Transboundary Exchanges of Renewable Energy and Desalinated Water in the Middle East. Energies. 2019; 12(8):1455. https://doi.org/10.3390/en12081455
Chicago/Turabian StyleKatz, David, and Arkadiy Shafran. 2019. "Transboundary Exchanges of Renewable Energy and Desalinated Water in the Middle East" Energies 12, no. 8: 1455. https://doi.org/10.3390/en12081455
APA StyleKatz, D., & Shafran, A. (2019). Transboundary Exchanges of Renewable Energy and Desalinated Water in the Middle East. Energies, 12(8), 1455. https://doi.org/10.3390/en12081455