Desiccant-Based Air Handling Unit Alternatively Equipped with Three Hygroscopic Materials and Driven by Solar Energy
Abstract
:1. Introduction
- -
- different solar thermal field configurations, three collecting surfaces (about 20, 27 and 34 m2) and different tilt angles (20–55°);
- -
- three desiccant rotor materials, that is the one which is actually installed in an available test plant (silica-gel), a composite material denominated MIL101@GO-6 (MILGO), made of graphite oxide dispersed in the MIL101 metal organic framework structure, and a naturally occurring zeolite-rich tuff, denominated Campanian Ignimbrite, which is rich in phillipsite and chabazite and is widespread in many areas of Campania region, in southern Italy.
2. Hygroscopic Materials: Modeling and Characterization
3. Methodology: Simulation Models, Plant Configuration and Analyses
- numerical simulations, carried out to dynamically assess the energy flows in the considered plants;
- energy and environmental analyses based on seasonal and annual aggregated results.
3.1. Plants Simulation Model Characteristics and Operation
3.2. Energy and Environmental Indexes
- -
- the solar fraction (SF), that is the share of thermal enegy from the solar subsystem on the total thermal energy required by the AHU in the IS;
- -
- the solar energy factor (SEF), that represents the ratio between the solar energy used in the AHU and that totally available.
- -
- the ratio between the solar energy used to regenerate the desiccnt wheel () and the total regeneration energy ():
- -
- the ratio between the solar energy used to regenerate the desiccant rotor and the total termal energy available from SC in summer (),
- -
- the primary energy saving (PES) achieved by IS with respect to CS;
- -
- the equivalent CO2 emissions avoided by IS with respect to CS.
4. Results
4.1. Energy Analysis
4.2. Environmental Analysis
5. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Nomenclature
CO2 | Equivalent CO2 emission (kg/year) |
cp | Specific heat (J/kgK) |
Ds | Surface diffusion coefficient (m2/s) |
E | Energy (MWh/y) |
F1, F2 | Isopotential lines |
K | Effective mass transfer coefficient (1/s) |
k | Thermal conductivity (W/mK) |
M | Moisture content of adsorbent material (kgwater/kgadsorbent) |
Mw | Molecular weight of water (kg/mol) |
PES | Primary Energy Saving (%) |
qs | isosteric heat of adsorption (J/mol) |
SEF | Solar Energy Factor (-) |
SF | Solar Fraction (-) |
T, t | Temperature (K), (°C) |
V | air superficial velocity (m/s) |
z | Axial coordinate (m) |
Greek symbols | |
α | Specific emission factor of electricity drawn from the grid (kg CO2/kW hel) |
β | Specific emission factor of primary energy related to natural gas combustion (kg CO2/kW hEp) |
ΔCO2 | Equivalent CO2 avoided emission (%) |
ε | Void fraction (-) |
η | Efficiency (-) |
θ | Time (s) |
ρ | Density (kg/m3) |
ω | Air absolute humidity (kgwater/kgdry air) or (gwater/kgdry air) |
Superscripts | |
CS | Conventional System |
DC | Dry cooler |
DWreg | Desiccant Wheel regeneration |
IS | Innovative System |
postheat | Post-heating phase |
preheat | Pre-heating phase |
TS | Thermal Storage |
US | User |
Subscripts | |
amb | Ambient |
aux | Auxiliaries |
B | Boiler |
CH | Chiller |
Co | Cooling |
Cooling | Cooling mode |
d | Adsorbent materia |
e | At equilibrium condition |
EG | Electric Grid |
el | Electric |
F1, F2 | Isopotential lines |
Heating | Heating mode |
in | Initial |
m | moist air |
non-HVAC | not related to HVAC |
p | Primary |
PP | Power Plant |
proc | Process |
reg | Regeneration |
SC | Solar thermal Collector |
th | Thermal |
tot, Total | Total |
Acronyms | |
AHU | Air Handling Unit |
B | Boiler |
CC | Cooling Coil |
CF | Cross-Flow heat exchanger |
CH | Chiller |
COP | Coefficient Of Performance |
CS | Conventional System |
DW | Desiccant Wheel |
EC | Evaporative Cooler |
HC, HC2 | Heating Coils |
HVAC | Heating, Ventilation and Air-Conditioning |
HW-HX | Hot Water Heat exchanger |
IS | Innovative System |
MILGO Hygroscopic material, consisting graphite oxide dispersed in the MIL101 metal organic framework network structure | |
SC | Solar thermal Collector |
SEF | Solar Energy Factor |
SF | Solar Fraction |
TS | Thermal Storage |
References
- Zheng, X.; Ge, T.S.; Wang, R.Z. Recent progress on desiccant materials for solid desiccant cooling systems. Energy 2014, 74, 280–294. [Google Scholar] [CrossRef]
- Asim, N.; Emdadi, Z.; Mohammad, M.; Yarmo, M.A.; Sopian, K. Agricultural solid wastes for green desiccant applications: An overview of research achievements, opportunities and perspectives. J. Clean. Prod. 2015, 91, 26–35. [Google Scholar] [CrossRef]
- Jani, D.B.; Mishra, M.; Sahoo, P.K. Performance analysis of a solid desiccant assisted hybrid space cooling system using TRNSYS. J. Build. Eng. 2018, 19, 26–35. [Google Scholar] [CrossRef]
- Al-Alili, A.; Hwang, Y.; Radermacher, R. Performance of a desiccant wheel cycle utilizing new zeolite material: Experimental investigation. Energy 2015, 81, 137–145. [Google Scholar] [CrossRef]
- Kanoğlu, M.; Çarpınlıoğlu, M.Ö.; Yıldırım, M. Energy and exergy analyses of an experimental open-cycle desiccant cooling system. Appl. Therm. Eng. 2004, 24, 919–932. [Google Scholar] [CrossRef]
- Subramanyam, N.; Maiya, M.P.; Srinivasa Murthy, S. Application of desiccant wheel to control humidity in air-conditioning systems. Appl. Therm. Eng. 2004, 24, 2777–2788. [Google Scholar] [CrossRef]
- Jia, C.X.; Dai, Y.J.; Wu, J.Y.; Wang, R.Z. Experimental comparison of two honeycombed desiccant wheels fabricated with silica gel and composite desiccant material. Energy Convers. Manag. 2006, 47, 2523–2534. [Google Scholar] [CrossRef]
- White, S.D.; Goldsworthy, M.; Reece, R.; Spillmann, T.; Gorur, A.; Lee, D.Y. Characterization of desiccant wheels with alternative materials at low regeneration temperatures. Int. J. Refrig. 2011, 34, 1786–1791. [Google Scholar] [CrossRef]
- Eicker, U.; Schürger, U.; Köhler, M.; Ge, T.; Dai, Y.; Li, H.; Wang, R. Experimental investigations on desiccant wheels. Appl. Therm. Eng. 2012, 42, 71–80. [Google Scholar] [CrossRef]
- Jia, C.X.; Dai, Y.J.; Wu, J.Y.; Wang, R.Z. Analysis on a hybrid desiccant air-conditioning system. Appl. Therm. Eng. 2006, 26, 2393–2400. [Google Scholar] [CrossRef]
- Fong, K.F.; Lee, C.K. Impact of adsorbent characteristics on performance of solid desiccant wheel. Energy 2018, 144, 1003–1012. [Google Scholar] [CrossRef]
- Intini, M.; Goldsworthy, M.; White, S.; Joppolo, C.M. Experimental analysis and numerical modelling of an AQSOA zeolite desiccant wheel. Appl. Therm. Eng. 2015, 80, 20–30. [Google Scholar] [CrossRef]
- Goldsworthy, M.J. Measurements of water vapour sorption isotherms for RD silica gel, AQSOA-Z01, AQSOA-Z02, AQSOA-Z05 and CECA zeolite 3A. Microporous Mesoporous Mater. 2014, 196, 59–67. [Google Scholar] [CrossRef]
- Enteria, N.; Yoshino, H.; Mochida, A.; Satake, A.; Yoshie, R.; Takaki, R.; Yonekura, H.; Mitamura, T.; Tanaka, Y. Performance of solar-desiccant cooling system with silica–gel (SiO2) and titanium dioxide (TiO2) desiccant wheel applied in East Asian climates. Sol. Energy 2012, 86, 1261–1279. [Google Scholar] [CrossRef]
- Rajamani, M.; Maliyekkal, S.M. Chitosan reinforced boehmite nanocomposite desiccant: A promising alternative to silica gel. Carbohydr. Polym. 2018, 194, 245–251. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; Yu, Y.; Ma, C.; Xiao, J.; Xia, Q.; Li, Y. Adsorption isotherms and kinetics of water vapor on novel adsorbents MIL-101(Cr)@GO with super-high capacity. Appl. Therm. Eng. 2015, 84, 118–125. [Google Scholar] [CrossRef]
- Caputo, D.; Iucolano, F.; Pepe, F.; Colella, C. Modeling of water and ethanol adsorption data on a commercial zeolite-rich tuff and prediction of the relevant binary isotherms. Microporous Mesoporous Mater. 2007, 105, 260–267. [Google Scholar] [CrossRef]
- Bareschino, P.; Diglio, G.; Pepe, F.; Angrisani, G.; Roselli, C.; Sasso, M. Numerical study of a MIL101 metal organic framework based desiccant cooling system for air conditioning application. Appl. Therm. Eng. 2017, 124, 641–651. [Google Scholar] [CrossRef]
- Bareschino, P.; Diglio, G.; Pepe, F. Modelling of a Zeolite-Rich Tuff Desiccant Wheel. Adv. Sci. Lett. 2017, 23, 6002–6006. [Google Scholar] [CrossRef]
- Maclaine-Cross, I.L.; Banks, P.J. Coupled heat and mass transfer in regenerators– predictions using an analogy with heat transfer. Int. J. Heat Mass Transf. 1972, 15, 1225–1242. [Google Scholar] [CrossRef]
- Howe, R.R. Model and Performance Characteristics of a Conditioning System Which Utilizes a Rotary Desiccant Dehumidifier. Master’s Thesis, University of Wisconsin, Madison, WI, USA, 1983. [Google Scholar]
- Jurinak, J.J. Open Cycle Solid Desiccant Cooling: Component Models and System Simulations. Ph.D. Thesis, University of Wisconsin, Madison, WI, USA, 1982. [Google Scholar]
- Banks, P.J. Prediction of Heat and Mass Regenerator performance using nonlinear analogy method: Part 1—basis. ASME J. Heat Transf. 1985, 107, 222–229. [Google Scholar] [CrossRef]
- Angrisani, G.; Roselli, C.; Sasso, M. Experimental validation of constant efficiency models for the subsystems of an unconventional desiccant-based Air Handling Unit and investigation of its performance. Appl. Therm. Energy 2012, 33–34, 100–108. [Google Scholar] [CrossRef]
- Solar Energy Laboratory. TRNSYS 17, a TRaNsient System Simulation Program; University of Wisconsin: Madison, WI, USA, 2010. [Google Scholar]
- Thermal Energy System Specialists Components Library v. 17.01; Thermal Energy System Specialists: Madison, WI, USA, 2004.
- Angrisani, G.; Roselli, C.; Sasso, M.; Tariello, F.; Vanoli, G.P. Performance Assessment of a Solar-Assisted Desiccant-Based Air Handling Unit Considering Different Scenarios. Energies 2016, 9, 724. [Google Scholar] [CrossRef]
- Angrisani, G.; Roselli, C.; Sasso, M.; Tariello, F. Dynamic performance assessment of a micro-trigeneration system with a desiccant-based air handling unit in Southern Italy climatic conditions. Energy Convers. Manag. 2014, 80, 188–201. [Google Scholar] [CrossRef]
- Angrisani, G.; Canelli, M.; Roselli, C.; Sasso, M. Calibration and validation of a thermal energy storage model: Influence on simulation results. Appl. Therm. Eng. 2014, 67, 190–200. [Google Scholar] [CrossRef]
- Angrisani, G.; Roselli, C.; Sasso, M.; Tariello, F. Dynamic performance assessment of a solar-assisted desiccant-based air handling unit in two Italian cities. Energy Convers. Manag. 2016, 113, 331–345. [Google Scholar] [CrossRef]
Parameter | Opaque Components | Transparent Components | |||||
---|---|---|---|---|---|---|---|
Roof | External Walls (N/S) | External Walls (E/W) | On the Ground Floor | North | South | East/West | |
U (W/m2 K) | 2.30 | 1.11 | 1.11 | 0.297 | 2.83 | 2.83 | 2.83 |
Area (m2) | 63.5 | 36 | 15.87 | 63.5 | 8.53 | 9.40 | 0.976 |
g (-) | - | - | - | - | 0.755 | 0.755 | 0.755 |
Component (Reference) | Type | Library | Main Parameters | Value | Units |
---|---|---|---|---|---|
Cross flow heat exchanger [24] | 91 | Standard | Effectiveness | 0.446 | - |
Humidifier [24] | 506 c | TESS | Saturation efficiency | 0.551 | - |
Natural gas boiler [24] | 6 | Standard | Nominal thermal power | 24.1 | kW |
Efficiency | 0.902 | - | |||
Air-cooled chiller [24] | 655 | TESS | Rated capacity | 8.50 | kW |
Rated COP | 2.98 | - | |||
Heating coil [24] | 670 | TESS | Liquid specific heat | 4.190 | kJ/(kg·K) |
Effectiveness | 0.864 | - | |||
Cooling coil [24] | 508 | TESS | Liquid specific heat | 4.190 | kJ/(kg·K) |
Bypass fraction | 0.177 | - | |||
Storage tank [29] | 60 f | Standard | Volume | 971 | L |
Height | 2.04 | m | |||
Tank loss coefficient | 1.37 | W/(m2·K) | |||
Liquid specific heat | 4.190 | kJ/(kg·K) | |||
Evacuated solar collectors | 71 | Standard | Tested flow rate | 8.43 × 10−3 | kg/(s·m2) |
Intercept efficiency | 0.676 | - | |||
Efficiency slope | 1.15 | W/(m2·K) | |||
Efficiency curvature | 0.004 | W/(m2·K2) | |||
Fluid specific heat | 3.85 | kJ/(kg·K) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bareschino, P.; Pepe, F.; Roselli, C.; Sasso, M.; Tariello, F. Desiccant-Based Air Handling Unit Alternatively Equipped with Three Hygroscopic Materials and Driven by Solar Energy. Energies 2019, 12, 1543. https://doi.org/10.3390/en12081543
Bareschino P, Pepe F, Roselli C, Sasso M, Tariello F. Desiccant-Based Air Handling Unit Alternatively Equipped with Three Hygroscopic Materials and Driven by Solar Energy. Energies. 2019; 12(8):1543. https://doi.org/10.3390/en12081543
Chicago/Turabian StyleBareschino, Piero, Francesco Pepe, Carlo Roselli, Maurizio Sasso, and Francesco Tariello. 2019. "Desiccant-Based Air Handling Unit Alternatively Equipped with Three Hygroscopic Materials and Driven by Solar Energy" Energies 12, no. 8: 1543. https://doi.org/10.3390/en12081543
APA StyleBareschino, P., Pepe, F., Roselli, C., Sasso, M., & Tariello, F. (2019). Desiccant-Based Air Handling Unit Alternatively Equipped with Three Hygroscopic Materials and Driven by Solar Energy. Energies, 12(8), 1543. https://doi.org/10.3390/en12081543