A Review of Software Tools to Study the Energetic Potential of Tidal Currents
Abstract
:1. Introduction
- is the hydrokinetic power (W/m2)
- is the velocity of the current (m/s)
- is the water density (kg/m3)
- is the energetic potential calculated in a certain period (Wh/m2)
2. Main Characteristics of 1D, 2D, and 3D Codes
- U = (h, hU, hV) is the vector of depth-averaged flow variables; h is the water depth; and U and V are the velocities in the horizontal plane
- F(U) is the tensor including spatial variations of the flow variables (or convective terms)
- N(U) is the tensor including the turbulent stresses (or diffusive terms)
- S is the tensor of source terms; it includes the effects of bed slope and bottom friction and, depending on the code, the wind stress and Coriolis force
3. 1D Codes
3.1. HEC-RAS 1D
3.2. ISIS 1D
3.3. MASCARET 1D
3.4. SOBEK 1D
3.5. MIKE 11
4. 2D Codes
4.1. HEC-RAS 2D
4.2. IBER
4.3. MIKE 21
4.4. TELEMAC 2D
4.5. INFOWORKS 2D
4.6. SOBEK 2D
4.7. TUFLOW
- TUFLOW ADI (Alternating Direction Implicit), a semi-implicit second-order FD scheme.
- TUFLOW GPU (sold as an additional module), an explicit first-order FD scheme that claims to reduce the computational resources needed, which makes it suitable to run using the Graphic Processing Units (GPU) of graphic cards.
4.8. ISIS 2D
- ADI (Alternative Implicit Direction), used for subcritical flows. In x and y directions the water depth and the flows between cells are represented implicitly, while the other variables are represented explicitly by using 1D ISIS code.
- TVD (Total Variation Diminishing), used for supercritical flows and hydraulic jumps.
- ISIS FAST, where floods can be modeled as water stagnation in topographical depressions.
4.9. ADCIRC 2D
5. 3D Codes
5.1. DELFT 3D
5.2. ROMS
5.3. FVCOM
5.4. MITgcm
5.5. MIKE 3 FM
5.6. TELEMAC 3D
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Huckerby, J.; Jeffrey, H.; Sedgwick, J.; Jay, B.; Finlay, L.; Ocean Energy Systems (OES). An International Vision for Ocean Energy—Version II. Ocean Energy Systems Implementing Agreement, 2012. Available online: www.ocean-energy-systems.org (accessed on 1 May 2019).
- Rourke, F.O.; Boyle, F.; Reynolds, A. Marine current energy devices: Current status and possible future application. Renew. Sustain. Energy Rev. 2010, 14, 1026–1036. [Google Scholar] [CrossRef]
- Fox, C.J.; Benjamins, S.; Masden, E.A.; Miller, R. Challenges and opportunities in monitoring the impacts of tidal-stream energy devices on marine vertebrates. Renew. Sustain. Energy Rev. 2016, 81, 1926–1938. [Google Scholar] [CrossRef]
- Magagna, D.; Uihlein, A. Ocean energy development in Europe: Current status and future perspectives. Int. J. Mar. Energy 2015, 11, 84–104. [Google Scholar] [CrossRef] [Green Version]
- Neil, S.P.; Angeloudis, A.; Robins, P.E.; Walkington, I.; Ward, S.L.; Masters, I.; Lewis, M.J.; Piano, M.; Avdis, A.; Piggott, M.D.; et al. Tidal range energy resource and optimization—Past perspectives and future challenges. Renew. Energy 2018, 127, 763–778. [Google Scholar] [CrossRef]
- Bryden, I.G.; Couch, S.J. ME1—Marine energy extraction: Tidal resource analysis. Renew. Energy 2006, 31, 133–139. [Google Scholar] [CrossRef]
- Vennell, R.; Funke, S.W.; Draper, S.; Stevens, C.; Divett, T. Designing large arrays of tidal turbines: A synthesis and review. Renew. Sustain. Energy Rev. 2015, 41, 454–472. [Google Scholar] [CrossRef]
- Atwater, J.F.; Lawrence, G.A. Power potential of a split tidal channel. Renew. Energy 2010, 35, 329–332. [Google Scholar] [CrossRef]
- Garrett, C.; Cummins, P. The power potential of tidal currents in channels. Proc. R. Soc. A Math. Phys. Eng. Sci. 2005, 461, 2563–2572. [Google Scholar] [CrossRef]
- Sutherland, G.; Foreman, M.; Garrett, C. Tidal current energy assessment for Johnstone strait, Vancouver island. Proc. Inst. Mech. Eng. Part A J. Power Energy 2007, 221, 147–157. [Google Scholar] [CrossRef]
- Yang, Z.; Wang, T.; Copping, A.E. Modeling tidal stream energy extraction and its effects on transport processes in a tidal channel and bay system using a three-dimensional coastal ocean model. Renew. Energy 2013, 50, 605–613. [Google Scholar] [CrossRef]
- Goward Brown, A.J.; Neill, S.P.; Lewis, M.J. Tidal energy extraction in three-dimensional ocean models. Renew. Energy 2017, 114, 244–257. [Google Scholar] [CrossRef]
- Casulli, V.; Walters, R.A. An unstructured grid, there-dimensional model based on the shallow water equations. Int. J. Numer. Methods Fluids 2000, 32, 331–348. [Google Scholar] [CrossRef]
- HEC-RAS Software Documentation. Available online: http://www.hec.usace.army.mil/software/hec-ras/ (accessed on 22 February 2019).
- US Army Corps of Engineers. HEC-RAS 5.0 Reference Manual; US Army Corps of Engineers: Davis, CA, USA, 2016.
- Spurlock, D.S. Modeling Flows for Assessing Tidal Energy Generation Potential. Master Thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA USA, 12 September 2008. [Google Scholar]
- Álvarez Álvarez, E.A.; Rico-Secades, M.; Fernández Suárez, D.F.; Gutiérrez-Trashorras, A.J.; Fernández-Francos, J. Obtaining energy from tidal microturbines: A practical example in the Nalón River. Appl. Energy 2016, 183, 100–112. [Google Scholar] [CrossRef]
- ISIS Software Documentation. Available online: http://help.floodmodeller.com/isis/ISIS.htm (accessed on 22 February 2019).
- Samuels, P.G.; Burt, N. A new joint probability appraisal of flood risk. Proc. Inst. Civ. Eng. Water Marit. Eng. 2002, 154, 109–115. [Google Scholar] [CrossRef]
- MASCARET Software Documentation. Available online: http://www.opentelemac.org/index.php/presentation?id=138 (accessed on 22 February 2019).
- Cunge, J.A.; Wegner, M. Intégration numérique des équations d’écoulement de barré de Saint-Venant par un schéma implicite de différences finies. La Houille Blanche 1964, 1, 33–39. [Google Scholar] [CrossRef]
- Goutal, N.; Lacombe, J.M.; Zaoui, F.; El-Kadi-Abderrezzak, K. MASCARET: A 1-D open-source software for flow hydrodynamic and water quality in open channel networks. In River Flow; Taylor & Francis Group: London, UK, 2012; Volume 1, pp. 1169–1174. [Google Scholar]
- Goutal, N.; Kivva, S.; Luck, M.; Periáñez, R.; Goutal, N.; Kivva, S.; Luck, M.; Monte, L.; Zheleznyak, M. Redissolution of 226Ra from sediments in a Spanish estuary affected by the phosphate industry: Model comparisons in the frame of the IAEA EMRAS Project. In Proceedings of the International Symposium, Naturally Occurring Radioactive Material (Norm V), Seville, Spain, 19–22 March 2007; pp. 307–318. [Google Scholar]
- SOBEK. 1D/2D Modelling Suite for Integral Water Solutions; User Man. Deltares: Delft, The Netherlands, 2016. [Google Scholar]
- Horrevoets, A.C.; Savenije, H.H.G.; Schuurman, J.N.; Graas, S. The influence of river discharge on tidal damping in alluvial estuaries. J. Hydrol. 2004, 294, 213–228. [Google Scholar] [CrossRef]
- Lam, N.T.; Stive, M.J.; Verhagen, H.J.; Wang, Z.B. Morphodynamic modelling for Thuan An Inlet, Vietnam. In Proceedings of the 2nd International Conference on Estuaries and Coasts, Guanzhou, China, 28 November 2006; pp. 1–7. [Google Scholar]
- Twigt, D.J.; De Goede, E.D.; Zijl, F.; Schwanenberg, D.; Chiu, A.Y. Coupled 1D-3D hydrodynamic modelling, with application to the Pearl River Delta. Ocean Dyn. 2009, 59, 1077–1093. [Google Scholar] [CrossRef]
- MIKE 11 Software Documentation. Available online: https://www.mikepoweredbydhi.com/download/mike-by-dhi-2014/mike 11?ref=%7BCF5835F0-51C9-46F3-8134-57BE71954D19%7D (accessed on 26 February 2019).
- Abbott, M.B.; Ionescu, F. On the numerical computation of nearly horizontal flows. J. Hydraul. Res. 1967, 5, 97–117. [Google Scholar] [CrossRef]
- Luu, T.N.; Garnier, J.; Billen, G.; Orange, D.; Némery, J.; Le, T.P.; Tran, H.T.; Le, L.A. Hydrological regime and water budget of the Red River Delta (Northern Vietnam). J. Asian Earth Sci. 2010, 37, 219–228. [Google Scholar] [CrossRef]
- Shampa, M.; Pramanik, I.M. Tidal River Management (TRM) for Selected Coastal Area of Bangladesh to Mitigate Drainage Congestion. Int. J. Sci. Technol. Res. 2012, 1, 1–6. [Google Scholar]
- Panda, R.K.; Pramanik, N.; Bala, B. Simulation of river stage using artificial neural network and MIKE 11 hydrodynamic model. Comput. Geosci. 2010, 36, 735–745. [Google Scholar] [CrossRef]
- Toro, E.F. Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction, 3rd ed.; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Roe, P.L. Approximate Riemann solvers, parameter vectors, and difference schemes. J. Comput. Phys. 1981, 43, 357–372. [Google Scholar] [CrossRef] [Green Version]
- Brunner, G.W. HEC-RAS River Analysis System. In Proceedings of the North American Water and Environment Congress & Destructive Water, ASCE Library, Anaheim, CA, USA, 22–28 June 1996; pp. 3782–3787. [Google Scholar]
- IBER Software Documentation. Available online: http://iberaula.es/aula-iber/presentacion (accessed on 27 February 2019).
- Bladé, E.; Cea, L.; Corestein, G.; Escolano, E.; Puertas, J.; Vázquez-Cendón, E.; Dolz, J.; Coll, A. Iber: Herramienta de simulación numérica del flujo en ríos. Rev. Int. Metod. Numer. Para Calc Y Disen En Ing. 2014, 30, 1–10. [Google Scholar] [CrossRef]
- MIKE 21 Software Documentation. Available online: https://www.mikepoweredbydhi.com/products/mike-21 (accessed on 27 February 2019).
- DHI. MIKE 21 Flood Screening Tool—Hydrodynamic Module; DHI Headquarters: Hørsholm, Denmark, 2016. [Google Scholar]
- DHI. MIKE 21 Flow Model User Manual; DHI Headquarters: Hørsholm, Denmark, 2016. [Google Scholar]
- DHI. MIKE 21 & MIKE 3 FLOW MODEL FM Hydrodynamic Module Step-by-Step Training Guide; DHI Headquarters: Hørsholm, Denmark, 2010. [Google Scholar]
- Easton, M.C.; Woolf, D.K.; Bowyer, P.A. The dynamics of an energetic tidal channel, the Pentland Firth, Scotland. Cont. Shelf Res. 2012, 48, 50–60. [Google Scholar] [CrossRef]
- Martin-Short, R.; Hill, J.; Kramer, S.C.; Avdis, A.; Allison, P.A.; Piggott, M.D. Tidal resource extraction in the Pentland Firth, UK: Potential impacts on flow regime and sediment transport in the Inner Sound of Stroma. Renew. Energy 2015, 76, 596–607. [Google Scholar] [CrossRef] [Green Version]
- O’Rourke, F.; Boyle, F.; Reynolds, A. Tidal current energy resource assessment in Ireland: Current status and future update. Renew. Sustain. Energy Rev. 2010, 14, 3206–3212. [Google Scholar] [CrossRef] [Green Version]
- Avilés Port Authority. Proyecto de Gestión Ambiental de los Materiales de Dragado del Puerto de Avilés; Avilés Port Authority: Avilés, Spain, 2004. [Google Scholar]
- Pans, S.; Gari, J.; Ann, T.C.; Phipatanasuphorn, V.; Rasch, P.S. A decision support tool for the optimisation of large tidal power arrays. In Proceedings of the 9th European Wave and Tidal Energy Conference (EWTEC 2011), Southampton, UK, 5–9 September 2011. [Google Scholar]
- TELEMAC 2D Software Documentation. Available online: http://www.opentelemac.org/index.php/presentation?id=17 (accessed on 27 February 2019).
- TELEMAC Numerical Schemes. Available online: http://wiki.opentelemac.org/doku.php (accessed on 27 February 2019).
- Sara, P. Well-Balanced Schemes for Shallow Water Equations. Master’s Thesis, Politecnico di Milano, Milan, Italy, 2004. [Google Scholar]
- Lalander, E.; Thomassen, P.; Leijon, M. Evaluation of a model for predicting the tidal velocity in fjord entrances. Energies 2013, 6, 2031–2051. [Google Scholar] [CrossRef]
- Blunden, L.S.; Bahaj, A.S. Initial evaluation of tidal stream energy resources at Portland Bill, UK. Renew. Energy 2006, 31, 121–132. [Google Scholar] [CrossRef]
- Piano, M.; Ward, S.; Robins, P.; Neill, S.; Lewis, M.; Davies, A. Characterizing the tidal energy resource of the West Anglesey Demonstration Zone (UK), using TELEMAC-2D and field observations. In Proceedings of the XXII TELEMAC-MASCARET Technical User Conference, Liverpool, UK, 15–16 October 2015; pp. 195–203. [Google Scholar]
- Bourban, S.E.; Couch, S.J.; Baldock, A.; Cheeseman, S. Coastal shelf model of northern European waters to inform tidal power industry decisions: SMARTtide. Underw. Technol. Int. J. Soc. Underw. 2014, 32, 15–26. [Google Scholar] [CrossRef]
- Pérez-Ortiz, A.; Pescatore, J.; Bryden, I. A systematic approach to undertake tidal energy resource assessment with Telemac-2D. In Proceedings of the 10th European Wave and Tidal Energy Conference (EWTEC), Aalborg, Denmark, 2–5 September 2013. [Google Scholar]
- INFOWORKS Software Documentation. Available online: http://www.innovyze.com/products/infoworks_cs/infoworks_2d.aspx (accessed on 28 February 2019).
- INFOWORKS Software Documentation. Available online: http://blog.innovyze.com/2014/05/15/2d-hydraulic-theory/ (accessed on 28 February 2019).
- Model, P. Eastern CFRAM Study; HA09 Hydraulics Report; Office of Public Works: Dublin, Ireland, 2014. [Google Scholar]
- SOBEK 2D Software Documentation. Available online: https://www.deltares.nl/en/software/sobek/ (accessed on 28 February 2019).
- Van Rijn, L.C. Tidal Phenomena in the Scheldt Estuary; Report; Deltares: Delft, The Netherlands, 2010; Volume 105, p. 99. [Google Scholar]
- TUFLOW Software Documentation. Available online: https://www.tuflow.com/ (accessed on 28 February 2019).
- Spurlock, D.S. Modeling Flows for Assessing Tidal Energy Generation Potential. Master’s Thesis, Virginia Tech University, Blacksburg, VA, USA, 2008. [Google Scholar]
- Syme, W.; Jones, R.; Arneson, L. Two-Dimensional Flow Modeling of Hydraulic Structures in a 2D ADI Scheme. In Proceedings of the IAHR World Conference Proceedings: 33rd Congress, Vancouver, BC, Canada, 9–14 August 2009. [Google Scholar]
- Hoanh, C.T.; Phong, N.D.; Trung, N.H.; Dung, L.C.; Hien, N.X.; Ngoc, N.V.; Tuong, T.P. Modelling to support land and water management: Experiences from the Mekong River Delta, Vietnam. Water Int. 2012, 37, 408–426. [Google Scholar] [CrossRef]
- ADCIRC Software Documentation. Available online: http://adcirc.org (accessed on 11 April 2019).
- ADCIRC Software Documentation. Available online: https://en-wikipedia.org/wiki/ADCIRC (accessed on 11 April 2019).
- Dresback, K.M.; Kolar, R.L.; Dietrich, J.C. On the form of the momentum equation for shallow water models based on the generalized wave continuity equation. Adv. Water Resour. 2005, 28, 345–358. [Google Scholar] [CrossRef]
- Luettich, R.; Westerink, J. Formulation and Numerical Implementation of the 2D/3D ADCIRC Finite Element Model Version 44.XX. Available online: https://adcirc.org/files/2018/11/adcirc_theory_2004_12_08.pdf (accessed on 12 August 2004).
- Walkington, I.; Burrows, R. Modelling tidal stream power potential. Appl. Ocean Res. 2009, 31, 239–245. [Google Scholar] [CrossRef]
- DELFT 3D Software Documentation. Available online: https://oss.deltares.nl/web/delft3d (accessed on 28 February 2019).
- Mungar, S. Hydrodynamics of Horizontal-Axis Tidal Current Turbines; A Modelling Approach Based on Delft3D; Technical University of Delft: Delft, The Netherlands, 2014; Volume 516, p. 157. [Google Scholar]
- Waldman, S.; Baston, S.; Nemalidinne, R.; Chatzirodou, A.; Venugopal, V.; Side, J. Implementation of tidal turbines in MIKE 3 and Delft3D models of Pentland Firth & Orkney Waters. Ocean Coast. Manag. 2017, 147, 21–36. [Google Scholar] [CrossRef] [Green Version]
- Ramos, V.; Carballo, R.; Sanchez, M.; Veigas, M.; Iglesias, G. Tidal stream energy impacts on estuarine circulation. Energy Convers. Manag. 2014, 80, 137–149. [Google Scholar] [CrossRef]
- ROMS Software Documentation. Available online: www.myroms.org (accessed on 28 February 2019).
- Lewis, M.; Neill, S.P.; Robins, P.E.; Hashemi, M.R. Resource assessment for future generations of tidal-stream energy arrays. Energy 2015, 83, 403–415. [Google Scholar] [CrossRef] [Green Version]
- Neill, S.P.; Hashemi, M.R.; Lewis, M.J. Tidal energy leasing and tidal phasing. Renew. Energy 2015, 85, 580–587. [Google Scholar] [CrossRef]
- Roc, T.; Conley, D.C.; Greaves, D. Methodology for tidal turbine representation in ocean circulation model. Renew. Energy 2013, 51, 448–464. [Google Scholar] [CrossRef] [Green Version]
- FVCOM Software Documentation. Available online: http://fvcom.smast.umassd.edu/ (accessed on 28 February 2019).
- Chen, C.; Beardsley, R.C.; Cowles, G.; Qi, J.; Lai, Z.; Gao, G.; Stuebe, D.; Xu, Q.; Xue, P.; Ge, J.; et al. An Unstructured Grid, Finite-Volume Coastal Ocean Model. FVCOM User Manual, 3rd ed.; 02139Project No. 2010-R/RC-116; Sea Grant College Program Massachusetts Institute of Technology Cambridge: Cambridge, MA, USA, 2010. [Google Scholar]
- Tang, H.S.; Qu, K.; Chen, G.Q.; Kraatz, S.; Aboobaker, N.; Jiang, C.B. Potential sites for tidal power generation: A thorough search at coast of New Jersey, USA. Renew. Sustain. Energy Rev. 2014, 32, 412–425. [Google Scholar] [CrossRef]
- Tang, H.S.; Kraatz, S.; Qu, K.; Chen, G.Q.; Aboobaker, N.; Jiang, C.B. High-resolution survey of tidal energy towards power generation and influence of sea-level-rise: A case study at coast of New Jersey, USA. Renew. Sustain. Energy Rev. 2014, 32, 960–982. [Google Scholar] [CrossRef]
- Chen, C.; Gao, G.; Qi, J.; Proshutinsky, A.; Beardsley, R.C.; Kowalik, Z.; Cowles, G. A new high-resolution unstructured grid finite volume Arctic Ocean model (AO-FVCOM): An application for tidal studies. J. Geophys. Res. Ocean. 2009, 114. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Li, M.; McLelland, S.J.; Jordan, L.B.; Simmons, S.M.; Amoudry, L.O.; Ramirez-Mendoza, R.; Thorne, P.D. Modelling tidal stream turbines in a three-dimensional wave current fully coupled oceanographic model. Renew. Energy 2017, 114, 297–307. [Google Scholar] [CrossRef]
- De Dominicis, M.; O’Hara Murray, R.; Wolf, J. Multi-scale ocean response to a large tidal stream turbine array. Renew. Energy 2017, 114, 1160–1179. [Google Scholar] [CrossRef]
- Murray, R.O.; Gallego, R. A modelling study of the tidal stream resource of the Pentland Firth, Scotland. Renew. Energy 2017, 102, 326–340. [Google Scholar] [CrossRef]
- MITgcm Software Documentation. Available online: http://mitgcm.org/ (accessed on 28 February 2019).
- Marshall, J.; Adcroft, A.; Hill, C.; Perelman, L.; Heisey, C. A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers. J. Geophys. Res. Ocean. 1997, 102, 5753–5766. [Google Scholar] [CrossRef] [Green Version]
- Marshall, J.; Jones, H.; Hill, C. Efficient ocean modeling using non-hydrostatic algorithms. J. Mar. Syst. 1998, 18, 115–134. [Google Scholar] [CrossRef]
- Adcroft, A.; Campin, J.M.; Dutkiewicz, S.; Evangelinos, C.; Ferreira, D.; Forget, G.; Fox-Kemper, B.; Heimbach, P.; Hill, C.; Hill, E.; et al. MITgcm Documentation; MIT Department of EAPS: Cambridge, MA, USA, 2018. [Google Scholar]
- Sammartino, S.; Lafuente, J.G.; Garrido, J.S.; De los Santos, F.J.; Fanjul, E.Á.; Naranjo, C.; Bruno, M.; Calero, C. A numerical model analysis of the tidal flows in the Bay of Algeciras, Strait of Gibraltar. Cont. Shelf. Res. 2014, 72, 34–46. [Google Scholar] [CrossRef]
- Vlasenko, V.; Stashchuk, N.; Inall, M.E.; Hopkins, J.E. Tidal energy conversion in a global hot spot: On the 3-D dynamics of baroclinic tides at the Celtic Sea shelf break. J. Geophys. Res. Ocean. 2014, 119, 3249–3265. [Google Scholar] [CrossRef] [Green Version]
- MIKE 3 FM Software Documentation. Available online: https://www.mikepoweredbydhi.com/the-academy-by-dhi/course-description/coast-and-marine/overview/mike-21-3-flow-model-hd-fm (accessed on 28 February 2019).
- Moharir, R.V.; Khairnar, K.; Paunikar, W.N. MIKE 3 as a modeling tool for flow characterization: A review of applications on water bodies. Int. J. Adv. Stud. Comput. Sci. Eng. Ijascse 2014, 3, 32–43. [Google Scholar]
- Goyal, R.; Rathod, P. Hydrodynamic Modelling for Salinity of Singapore Strait and Johor Strait using MIKE 3FM. Int. Proc. Chem. Biol. Environ. Eng. 2011, 4, 295–300. [Google Scholar]
- Masters, I.; Williams, A.; Croft, T.; Togneri, M.; Edmunds, M.; Zangiabadi, E.; Fairley, I.; Karunarathna, H. A Comparison of Numerical Modelling Techniques for Tidal Stream Turbine Analysis. Energies 2015, 8, 7833–7853. [Google Scholar] [CrossRef] [Green Version]
- TELEMAC 3D Software Documentation. Available online: http://www.opentelemac.org/index.php/presentation?id=18 (accessed on 11 April 2019).
- Cornett, A.; Durand, N.; Serrer, M. 3-D Modelling and Assessment of Tidal Current Resources in the Bay of Fundy, Canada. In Proceedings of the 3rd International Conference on Ocean Energy (ICOE 2010), Bilbao, Spain, 6–8 October 2010. [Google Scholar]
- Gillou, N.; Chapalain, G. Tidal Turbines’ Layout in a Stream with Asymmetry and Misalignment. Energies 2017, 10, 1892. [Google Scholar] [CrossRef]
Code | Business Model | Numerical Scheme | Mesh Characteristics | Turbulent Models |
---|---|---|---|---|
HEC-RAS 2D | Free software | FD Crank–Nicolson second-order explicit/proprietary FV | Structured/Unstructured | Own development |
IBER | Free software | FV first or second-order explicit/Roe | Unstructured | Constant, parabolic, mixing length, and Rastogi–Rodi, k-Ɛ |
MIKE 21 | Commercial | FD ADI/FV explicit Roe | Structured/Unstructured | Constant, time-varying value |
TELEMAC 2D | Free software (open-source) | FE/FV explicit Roe, first order or second-order | Unstructured | Constant, Elder, k-Ɛ and Smagorinsky |
INFOWORKS 2D | Commercial | FV explicit Roe | Unstructured | None |
SOBEK 2D | Commercial | Proprietary implicit Delft FD | Unstructured | Constant |
TUFLOW | Commercial | ADI semi-implicit second-order FD/GPU explicit first order FD/proprietary FV | Structured/Unstructured | Constant |
ISIS 2D | Commercial | ADI, TVD, or ISIS FAST FD | Structured | None |
ADCIRC 2D | Free software (open-source) | FE/FD | Unstructured | Constant |
Code | Business Model | Numerical Scheme | Mesh Characteristics | Turbulent Models | |
---|---|---|---|---|---|
Horizontal | Vertical | ||||
DELFT-3D | Free software (open-source) | FD | Structured | σ−coordinate, Z−coordinate | RANS: k−ε, k−L, Algebraic and Constant/LES: DELFT development |
ROMS | Free software (open-source) | FD second-order | Structured | σ−coordinate | Brunt–Vaisala frequency mix, Parameterization profile K, Mellor–Yamada, Generic Length Scale |
FVCOM | Free software (open-source) | FV | Unstructured | σ−coordinate | k−ε, Mellor and Yamada/Constant or Smagorinsky |
MITgcm | Free software (open-source) | FV | Structured, unstructured | Z−coordinate | LES: Smagorinsky, Leith, Modified Leith |
MIKE 3 FM | Payment software | FV | Unstructured | σ−coordinate, Z−coordinate | Constant, logarithmic law, k-ε/constant or Smagorinsky |
TELEMAC 3D | Free software (open-source | FV | Unstructured | σ−coordinate | Constant, Elder, k-Ɛ and Smagorinsky |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suárez-López, M.J.; Espina-Valdés, R.; Fernández Pacheco, V.M.; Navarro Manso, A.; Blanco-Marigorta, E.; Álvarez-Álvarez, E. A Review of Software Tools to Study the Energetic Potential of Tidal Currents. Energies 2019, 12, 1673. https://doi.org/10.3390/en12091673
Suárez-López MJ, Espina-Valdés R, Fernández Pacheco VM, Navarro Manso A, Blanco-Marigorta E, Álvarez-Álvarez E. A Review of Software Tools to Study the Energetic Potential of Tidal Currents. Energies. 2019; 12(9):1673. https://doi.org/10.3390/en12091673
Chicago/Turabian StyleSuárez-López, María José, Rodolfo Espina-Valdés, Víctor Manuel Fernández Pacheco, Antonio Navarro Manso, Eduardo Blanco-Marigorta, and Eduardo Álvarez-Álvarez. 2019. "A Review of Software Tools to Study the Energetic Potential of Tidal Currents" Energies 12, no. 9: 1673. https://doi.org/10.3390/en12091673
APA StyleSuárez-López, M. J., Espina-Valdés, R., Fernández Pacheco, V. M., Navarro Manso, A., Blanco-Marigorta, E., & Álvarez-Álvarez, E. (2019). A Review of Software Tools to Study the Energetic Potential of Tidal Currents. Energies, 12(9), 1673. https://doi.org/10.3390/en12091673