Investigation of Thermal Comfort Responses with Fuzzy Logic
Abstract
:1. Introduction
1.1. Energy Use of Buildings
1.2. Indoor Environment Quality
1.3. Comfort Indices
2. The Basics of Fuzzy Logic
- Center of gravity (COG);
- Center of area (COA); and
- Weighted average method.
3. Artificial Intelligence in HVAC Systems
4. Experiments with an Advanced Personalized Ventilation System
5. Fuzzy Decision System
- Universe (i.e., crisp value range): To what extent the smell was deemed good?
- How the temperature was deemed?
- Fuzzy set: malaise, acceptable well-being, excellent well-being
6. Possibilities of Fuzzy Comfort Index
7. Conclusions
8. Limitations
Author Contributions
Funding
Conflicts of Interest
References
- Directive 2010/31/EU of the European Parliament and of The Council of 19 May 2010 on the energy performance of buildings. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32010L0031. (accessed on 10 March 2019).
- Ürge-Vorsatz, D.; Cabeza, L.F.; Serrano, S.; Barreneche, C.; Petrichenko, K. Heating and cooling energy trends and drivers in buildings. Renew. Sustain. Energy Rev. 2015, 41, 85–98. [Google Scholar] [CrossRef] [Green Version]
- Isaac, M.; van Vuuren, D.P. Modeling global residential sector energy demand for heating and air conditioning in the context of climate change. Energy Policy 2009, 37, 507–521. [Google Scholar] [CrossRef]
- Levesque, A.; Pietzcker, R.C.; Baumstark, L.; de Stercke, S.; Grübler, A.; Luderer, G. How much energy will buildings consume in 2100? A global perspective within a scenario framework. Energy 2018, 148, 514–527. [Google Scholar] [CrossRef]
- Szodrai, F.; Lakatos, Á. Effect of wetting time in the sorption and in the thermal conductivity of the most commonly used structural materials. Build. Serv. Eng. Res. Technol. 2017, 38, 475–489. [Google Scholar] [CrossRef]
- Szodrai, F.; Lakatos, Á. Effect of the air motion on the heat transport behaviour of wall structures. Int. Rev. Appl. Sci. Eng. 2017, 8, 67–73. [Google Scholar] [CrossRef] [Green Version]
- Ákos, L.; István, D.; Umberto, B. Thermal characterization of different graphite polystyrene. Int. Rev. Appl. Sci. Eng. 2018, 9, 163–168. [Google Scholar]
- Lakatos, Á. Stability investigations of the thermal insulating performance of aerogel blanket. Energy Build. 2019, 185, 103–111. [Google Scholar] [CrossRef]
- Baglivo, C.; Congedo, P.M.; Di Cataldo, M.; Colucci, L.D.; D’Agostino, D. Envelope Design Optimization by Thermal Modelling of a Building in a Warm Climate. Energies 2017, 10, 1808. [Google Scholar] [CrossRef]
- Molinari, M.; Lazzarotto, A.F.B. The application of the parametric analysis for improved energy design of a ground source heat pump for residential buildings. Energy Build. 2013, 63, 119–128. [Google Scholar] [CrossRef]
- Brown, N.W.O.; Malmqvist, T.; Bai, W.; Molinari, M. Sustainability assessment of renovation packages for increased energy efficiency for multi-family buildings in Sweden. Build. Environ. 2013, 61, 140–148. [Google Scholar] [CrossRef]
- Al horr, Y.; Arif, M.; Katafygiotou, M.; Mazroei, A.; Kaushik, A.; Elsarrag, E. Impact of indoor environmental quality on occupant well-being and comfort: A review of the literature. Int. J. Sustain. Built Environ. 2016, 5, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Björnsson, E.; Janson, C.D.; Norbäck, G.B. Symptoms related to the Sick Building Syndrome in a general population sample: associations with atopy, bronchial hyper-responsiveness and anxiety. Int. J. Tuberc. Lung. Dis. 1998, 2, 1023–1028. [Google Scholar]
- Wargocki, P.; Wyon, D.P. Ten questions concerning thermal and indoor air quality effects on the performance of office work and schoolwork, Ten questions concerning thermal and indoor air quality effects on the performance of office work and schoolwork. Build. Environ. 2017, 112, 359–366. [Google Scholar] [CrossRef]
- Kang, S.; Ou, D.; Mak, C.M. The impact of indoor environmental quality on work productivity in university open-plan research offices. Build. Environ. 2017, 124, 78–89. [Google Scholar] [CrossRef]
- Schaudienst, F.; Vogdt, F.U. Fanger’s model of thermal comfort: A model suitable just for men? Energy Procedia 2017, 132, 129–134. [Google Scholar] [CrossRef]
- Cheung, T.; Schiavon, S.; Parkinson, T.; Lib, P.; Brager, G. Analysis of the accuracy on PMV–PPD model using the ASHRAE Global Thermal Comfort Database II. Build. Environ. 2019, 153, 205–217. [Google Scholar] [CrossRef]
- Geng, Y.; Ji, W.; Lin, B.; Zhu, Y. The impact of thermal environment on occupant IEQ perception and productivity. Build. Environ. 2017, 121, 158–167. [Google Scholar] [CrossRef]
- Fanger, P.O.; Comfort, T. Analysis and Applications in Environmental Engineering; Danish technical Press: Copenghagen, Denmark, 1970; pp. 114–131. [Google Scholar]
- Nicol, J.F.; Humphreys, M.A. Adaptive thermal comfort and sustainable thermal standards for buildings. Energy Build. 2002, 34, 563–572. [Google Scholar] [CrossRef]
- de Dear, R.; Brager, G.S. The adaptive model of thermal comfort and energy conservation in the built environment. Int. J. Biometeorol. 2001, 45, 100–108. [Google Scholar] [CrossRef] [Green Version]
- Fanger, P.O.; Toftum, J. Extension of the PMV model to non air conditioned buildings in warm climates. Energy Build. 2002, 34, 533–536. [Google Scholar] [CrossRef]
- Budd, G.M. Wet-bulb globe temperature (WBGT)—Its history and its limitations. J. Sci. Med. Sport 2008, 11, 20–32. [Google Scholar] [CrossRef] [PubMed]
- Yao, R.; Li, B.; Liu, J. A theoretical adaptive model of thermal comfort—Adaptive Predicted Mean Vote (aPMV). Build. Environ. 2009, 44, 2089–2096. [Google Scholar] [CrossRef]
- Sakoi, T.; Mochida, T.; Kurazumi, Y.; Kuwabara, K.; Horiba, Y.; Sawada, S. Heat balance model for a human body in the form of wet bulb globe temperature indices. J. Therm. Biol. 2018, 71, 1–9. [Google Scholar] [CrossRef]
- ISO 7730. ISO 7730:2005, Ergonomics of the thermal environment-Analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria; International Organization for Standardization: Geneva, Switzerland, 2005. [Google Scholar]
- Ng, K.C.; Kadirgama, K.; Ng, E.Y.K. Response surface models for CFD predictions of air diffusion performance index in a displacement ventilated office. Energy Build. 2008, 40, 774–781. [Google Scholar] [CrossRef]
- Kalmár, F. An indoor environment evaluation by gender and age using an advanced personalized ventilation system. Build. Serv. Eng. Res. Technol. 2017, 38, 505–521. [Google Scholar] [CrossRef] [Green Version]
- Kocsis, I. Sets, University of Debrecen, Faculty of Engineering. Available online: http://users.atw.hu/dejegyzet/download.php?fname=./szem1/DiszkretMatek/halmaz.pdf (accessed on 14 January 2019). (In Hungarian).
- Obádovics, J.G. Mathematics, 19th ed.; Scolar Kiadó: Budapest, Hungary, 2012; ISBN 978-963-244-330-0. (In Hungarian) [Google Scholar]
- Benesóczky, Z. Boole Logic, Basic Logics; Budapest University of Technology and Economics: Budapest, Hungary, 2004. (In Hungarian) [Google Scholar]
- Subways.net, Sendai Subway. Available online: http://www.subways.net/japan/sendai.htm (accessed on 3 December 2016).
- Menyhárt, J.; Pokorádi, L. Batteries Fuzzy Based Estimation. Hadmérnök-Katonai Műszaki Tudományok Online, IX 2014, 2, 48–55. (In Hungarian) [Google Scholar]
- László, T.K. Tikk Domonkos: Fuzzy Systems. Available online: http://www.typotex.hu/download/Fuzzy/output.xml (accessed on 23 September 2016).
- Artificial Intelligence and Life in 2030: One Hundred Years Study on Artificial Intelligence, Report of the 2015 Study Panel. September 2016. Available online: https://ai100.stanford.edu/sites/g/files/sbiybj9861/f/ai_100_report_0906fnlc_single.pdf (accessed on 10 March 2019).
- Apple: Siri. Available online: https://www.apple.com/siri/ (accessed on 10 March 2019).
- Microsoft: Cortana. Available online: https://www.microsoft.com/en-us/cortana (accessed on 3 October 2019).
- Dutta, N.N. DAT T. Artificial intelligence techniques for energy efficient H.V.A.C. system design. In Proceedings of the International Conference on Emerging Technologies for Sustainable and Intelligent HVAC&R Systems, Kolkata, India, 27–28 July 2018. [Google Scholar]
- IoT for All: The Future of HVAC Lies in AI and IoT. Available online: https://www.iotforall.com/future-hvac-ai-iot/ (accessed on 3 October 2019).
- Cheng, C.-C.; Lee, D. Artificial Intelligence-Assisted Heating Ventilation and Air Conditioning Control and the Unmet Demand for Sensors: Part 1. Problem Formulation and the Hypothesis. Sensors 2019, 19, 1131. [Google Scholar] [CrossRef]
- Shukla, A.; Sharma, A. Sustainability through Energy-Efficient Buildings; CRC Press: Boca Raton, FL, USA, 2018; ISBN 9781138066755. [Google Scholar]
- Yang, L.; Yan, H.; Lam, J.C. Thermal comfort and building energy consumption implications—A review. Appl. Energy 2014, 115, 164–173. [Google Scholar] [CrossRef]
- Kalmár, F. Innovative method and equipment for personalized ventilation. Indoor Air 2015, 25, 297–306. [Google Scholar] [CrossRef]
- Kalmár, F.; Kalmár, T. Alternative personalized ventilation. Energy Build. 2013, 65, 37–44. [Google Scholar] [CrossRef]
- Kalmár, F. Impact of elevated air velocity on subjective thermal comfort sensation under asymmetric radiation and variable airflow direction. J. Build. Phys. 2017, 42, 173–193. [Google Scholar] [CrossRef] [Green Version]
- Kalmár, F.; Kalmár, T. Study of human response in conditions of surface heating, asymmetric radiation and variable air jet direction. Energy Build. 2018, 179, 133–143. [Google Scholar] [CrossRef]
- Benyó, B.; Benyó, Z.; Paláncz, B.; Szilágyi, L.; Ferenci, T. Theory of technical and biology systems. Available online: https://www.tankonyvtar.hu/hu/tartalom/tamop412A/2011_0079_benyo_muszaki_es_biologiai_rendszerek/ch09s03.html (accessed on 26 April 2019). (In Hungarian).
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Menyhárt, J.; Kalmár, F. Investigation of Thermal Comfort Responses with Fuzzy Logic. Energies 2019, 12, 1792. https://doi.org/10.3390/en12091792
Menyhárt J, Kalmár F. Investigation of Thermal Comfort Responses with Fuzzy Logic. Energies. 2019; 12(9):1792. https://doi.org/10.3390/en12091792
Chicago/Turabian StyleMenyhárt, József, and Ferenc Kalmár. 2019. "Investigation of Thermal Comfort Responses with Fuzzy Logic" Energies 12, no. 9: 1792. https://doi.org/10.3390/en12091792
APA StyleMenyhárt, J., & Kalmár, F. (2019). Investigation of Thermal Comfort Responses with Fuzzy Logic. Energies, 12(9), 1792. https://doi.org/10.3390/en12091792