Comparison of Combustion Models for Lifted Hydrogen Flames within RANS Framework
Abstract
:1. Introduction
2. Problem Definition
2.1. Non-Reacting H2/N2 Jet
2.2. Lifted H2/N2 Jet Flame
3. Modeling
3.1. Outline of the Mathematical and Numerical Modeling
3.2. Combustion Modeling
3.2.1. Reaction Mechanisms
3.2.2. Turbulent Combustion Models
Eddy Dissipation Model with Kinetics (EDM+K)
Eddy Dissipation Concept (EDC)
Flamelet Generated Manifold (FGM)
Composition PDF Transport (PDF)
4. Results
4.1. On Solution Domains, Boundary Conditions, Grids
4.2. Non-Reacting H2/N2 Jet
4.3. Lifted H2/N2 Jet Flame
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Benim, A.C.; Geiger, M.; Doehler, S.; Schoenenberger, M.; Roemer, H. Modelling the flow in the exhaust hood of steam turbines under consideration of turbine-exhaust hood interaction. In Proceedings of the 1st European Conference on Turbomachinery—Fluid Dynamic and Thermodynamic Aspects: Computational Methods, Erlangen, Germany, 1–3 March 1995; Book Series: VDI Berichte. VDI Verlag: Duesseldorf, Germany, 1995; Volume 1185, pp. 343–357. [Google Scholar]
- Strielkowski, W.; Volkova, E.; Pushkareva, L.; Streimikiene, D. Innovative policies for energy efficiency and the use of renewables in hausholds. Energies 2019, 12, 1392. [Google Scholar] [CrossRef] [Green Version]
- Ebling, D.G.; Krumm, A.; Pfeiffelmann, B.; Gottschald, J.; Bruchmann, J.; Benim, A.C.; Adam, M.; Labs, R.; Herbertz, R.R.; Stunz, A. Development of a system for thermoelectric heat recovery from stationary industrial processes. J. Electron. Mater. 2016, 45, 3433–3439. [Google Scholar] [CrossRef]
- Tucki, K.; Orynycz, O.; Wasiak, A.; Świć, A.; Wichłacz, J. The impact of fuel type on the output parameters of a new biofuel burner. Energies 2019, 12, 1383. [Google Scholar] [CrossRef] [Green Version]
- Iqbal, S.; Benim, A.C.; Fischer, S.; Joos, F.; Kluß, D.; Wiedermann, A. Experimental and numerical analysis of natural bio and syngas swirl flames in a model gas turbine combustor. J. Therm. Sci. 2016, 25, 460–469. [Google Scholar] [CrossRef]
- Lamas, M.I.; Rodriguez, C.G. NOx reduction in Diesel-hydrogen engines using different strategies of ammonia injection. Energies 2019, 12, 1255. [Google Scholar] [CrossRef] [Green Version]
- Atakan, B. Compression-expansion processes for chemical energy storage: Thermodynamic optimization for methane, ethane and hydrogen. Energies 2019, 12, 3332. [Google Scholar] [CrossRef] [Green Version]
- Benim, A.C.; Epple, B.; Krohmer, B. Modelling of pulverised coal combustion by a Eulerian-Eulerian two-phase flow formulation. Prog. Comput. Fluid Dyn. Int. J. 2005, 5, 345–361. [Google Scholar] [CrossRef]
- Kim, J.-P.; Schnell, U.; Scheffknecht, G.; Benim, A.C. Numerical modelling of MILD combustion for coal. Prog. Comput. Fluid Dyn. Int. J. 2007, 7, 337–346. [Google Scholar] [CrossRef]
- Cordiner, S.; Manni, A.; Mulone, V.; Rocco, V. Biomass pyrolysis modeling of systems at laboratory scale with experimental validation. Int. J. Numer. Methods Heat Fluid Flow 2018, 28, 413–438. [Google Scholar] [CrossRef]
- Krakhella, K.W.; Bock, R.; Burheim, O.S.; Seland, F. Heat to H2: Using waste heat for hydrogen production through reverse electrodialysis. Energies 2019, 12, 3428. [Google Scholar] [CrossRef] [Green Version]
- El-Emam, R.S.; Khamis, I. Advances in nuclear hydrogen production: Results from an IAEA international collaborative research project. Int. J. Hydrogen Energy 2018, 44, 19080–19088. [Google Scholar] [CrossRef]
- Benim, A.C.; Syed, K.J. Flashback Mechanisms in Lean Premixed Gas Turbine Combustion; Academic Press: Cambridge, UK, 2014. [Google Scholar]
- Turns, S.R. An Introduction to Combustion, 3rd ed.; McGrawHill: New York, NY, USA, 2012. [Google Scholar]
- Lawn, C.J. Lifted flames on fuel jets in co-flowing air. Prog. Energy Combust. Sci. 2009, 35, 1–30. [Google Scholar] [CrossRef]
- Libby, P.A.; Williams, F.A. Turbulent Reacting Flows; Academic Press: London, UK, 1994. [Google Scholar]
- Schefer, R.W.; Namazian, M.; Kelly, J. Stabilization of lifted turbulent-jet flames. Combust. Flame 1994, 99, 75–86. [Google Scholar] [CrossRef]
- Benim, A.C.; Escudier, M.P.; Nahavandi, A.; Nickson, A.K.; Syed, K.J.; Joos, F. Experimental and numerical investigation of isothermal flow in an idealized swirl combustor. Int. J. Numer. Methods Heat Fluid Flow 2010, 20, 348–370. [Google Scholar] [CrossRef]
- Benim, A.C.; Pfeiffelmann, B.; Oclon, P.; Taler, J. Computational investigation of a lifted hydrogen flame with LES and FGM. Energy 2019, 173, 1172–1181. [Google Scholar] [CrossRef]
- Durbin, P.A.; Reif, B.A.P. Statistical Theory and Modelling for Turbulent Flows, 2nd ed.; Wiley: Chichester, UK, 2011. [Google Scholar]
- Cabra, R.T.; Myhrvold, T.; Chen, J.Y.; Dibble, R.W.; Karpetis, A.N.; Barlow, R.S. Simultaneous laser Raman-Rayleigh-LIF measurements and numerical modelling results of a lifted turbulent H2/N2 jet flame in a vitiated coflow. Proc. Combust. Inst. 2002, 29, 1881–1888. [Google Scholar] [CrossRef] [Green Version]
- Markides, C.N.; Mastorakos, E. An experimental study of hydrogen autoignition in a turbulent co-flow of heated air. Proc. Combust. Inst. 2005, 30, 883–891. [Google Scholar] [CrossRef]
- Wu, Z.; Stårner, S.H.; Bilger, R.W. Lift-off heights of turbulent H2/N2 jet flames in a vitiated co-flow. In Proceedings of the 2003 Australian Symposium on Combustion & The 8th Australian Flame Days, Melbourne, Australia, 8–9 December 2003; Honnery, D., Ed.; Monash University: Melbourne, Australia, 2003. [Google Scholar]
- Gordon, R.L.; Stårner, S.H.; Masri, A.R.; Bilger, R. Further characterization of lifted hydrogen and methane flames issuing into a vitiated coflow. In Proceedings of the Fifth Asia-Pacific Conference in Combustion, Adelaide, Australia, 18–20 July 2005. [Google Scholar]
- Pope, S.B. Computations of turbulent combustion: Progress and challenges. Proc. Combust. Inst. 1991, 23, 591–612. [Google Scholar] [CrossRef]
- Magnussen, B.F. The Eddy Dissipation Concept—A bridge between science and technology. In Proceedings of the ECCOMAS Thematic Conference on Computational Combustion, Lisbon, Portugal, 21–24 June 2005. [Google Scholar]
- Bowman, C.T.; Hanson, R.K.; Davidson, D.F.; Gardiner, W.C., Jr.; Lissianski, V.; Smith, G.P.; Golden, D.M.; Goldenberg, M.; Frenklach, M. Gri-Mech 2.11; Gas Research Institute: Des Plaines, IL, USA, 1999; Available online: www.me.berkeley.edu/gri-mech (accessed on 5 November 2018).
- Masri, A.R.; Cao, R.; Pope, S.B.; Goldin, G.M. PDF calculations of turbulent lifted flames of H2/N2 fuel issuing into a vitiated co-flow. Combust. Theory Model. 2004, 8, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Wu, Z.; Masri, A.R.; Bilger, R.W. An experimental investigation of the turbulence structure of a lifted H2/N2 jet flame in a vitiated co-flow. Flow Turbul. Combust. 2006, 76, 61–81. [Google Scholar] [CrossRef]
- Mueller, M.A.; Kim, T.J.; Yetter, R.A.; Dryer, F.L. Flow reactor studies and kinetic modeling of the H2/O2 reaction. Int. J. Chem. Kinet. 1999, 31, 113–125. [Google Scholar] [CrossRef]
- Lee, J.; Kim, Y. DQMOM based PDF transport modeling for turbulent lifted nitrogen-diluted hydrogen jet flame with autoignition. Int. J. Hydrogen Energy 2012, 37, 18498–18508. [Google Scholar] [CrossRef]
- Mir Najafizadeh, S.M.; Sadeghi, M.T.; Soduteh-Gherebagh, R. Analysis of autoignition of a turbulent lifted H2/N2 jet flame issuing into a vitiated coflow. Int. J. Hydrogen Energy 2013, 38, 2510–2522. [Google Scholar] [CrossRef]
- Li, J.; Zhao, Z.; Kazakov, A.; Dryer, F.L. An updated comprehensive kinetic model of hydrogen combustion. Int. J. Chem. Kinet. 2004, 36, 566–575. [Google Scholar] [CrossRef]
- Mouangue, R.; Obounou, M.; Mura, A. Turbulent lifted flames of H2/N2 fuel issuing into a vitiated coflow investigated using Lagrangian Intermittent Modelling. Int. J. Hydrogen Energy 2014, 39, 13002–13013. [Google Scholar] [CrossRef]
- Borghi, R.; Gonzalez, M. Applications of Lagrangian models to turbulent combustion. Combust. Flame 1986, 63, 239–250. [Google Scholar] [CrossRef]
- Naud, B.; Novella, R.; Pastor, J.M.; Winklinger, J.F. RANS modelling of a lifted H2/N2 flame using an unsteady flamelet progress variable approach with presumed PDF. Combust. Flame 2015, 162, 893–906. [Google Scholar] [CrossRef]
- Ihme, M.; See, Y.C. Prediction of autoignition in a lifted methane/air flame using an unsteady flamelet/progress variable model. Combust. Flame 2010, 157, 1850–1862. [Google Scholar] [CrossRef]
- Saxena, P.; Williams, F.A. Testing a small detailed chemical-kinetic mechanism for the combustion of hydrogen and carbon monoxide. Combust. Flame 2006, 145, 316–323. [Google Scholar] [CrossRef]
- Klimenko, A.Y.; Bilger, R.W. Conditional moment closure for turbulent combustion. Prog. Energy Combust. Sci. 1999, 25, 595–687. [Google Scholar] [CrossRef]
- De, S.; De, A.; Jaiswal, A.; Dash, A. Stabilization of lifted hydrogen jet diffusion flame in a vitiated co-flow: Effects of jet and coflow velocities, coflow temperature and mixing. Int. J. Hydrogen Energy 2016, 41, 15026–15042. [Google Scholar] [CrossRef]
- Larbi, A.A.; Bounif, A.; Senouci, M.; Gökalp, I.; Bouzit, M. RANS modelling of a lifted hydrogen flame using Eulerian/Lagrangian approaches with transported PDF method. Energy 2018, 164, 1242–1256. [Google Scholar] [CrossRef]
- Cao, R.P.; Pope, S.B.; Masri, A.R. Turbulent lifted flames in a vitiated coflow investigated using joint PDF calculations. Combust. Flame 2005, 142, 438–453. [Google Scholar] [CrossRef]
- Sautet, J.C.; Stepowski, D. Dynamic behavior of variable density, turbulent jets in their near development field. Phys. Fluids 1995, 7, 2796–2806. [Google Scholar] [CrossRef]
- Goodwin, D.G.; Speth, R.L.; Moffat, H.K.; Weber, B.W. Cantera: An Object-Oriented Software Toolkit for Chemical Kinetics, Thermodynamics and Transport Processes; Version 2.4.0; 2018; Available online: https://www.cantera.org (accessed on 11 November 2018).
- So, R.M.C.; Aksoy, H. On vertical turbulent buoyant jets. Int. J. Heat Mass Transf. 1993, 36, 3187–3200. [Google Scholar] [CrossRef]
- Benim, A.C. A finite element solution of radiative heat transfer in participating media utilizing the moment method. Comput. Methods Appl. Mech. Eng. 1988, 67, 1–14. [Google Scholar] [CrossRef]
- Kee, R.J.; Rupley, F.M.; Miller, J.A. The Chemkin Thermodynamic Data Base; Sandia National Laboratories Report, SAND87-8215B; Sandia National Laboratories: Livermore, CA, USA, 1991. [Google Scholar]
- Hirschfelder, J.O.; Curtiss, C.F.; Bird, R.B. Molecular Theory of Gases and Liquids; John Wiley & Sons: New York, NY, USA, 1954. [Google Scholar]
- Kee, R.J.; Dixon-Lewis, G.; Warnatz, J.; Coltrin, M.E.; Miller, J.A. A Fortran Computer Code Package for the Evaluation of Gas Phase Multicomponent Transport Properties; Sandia National Laboratories Report SAND86-8246; Sandia National Laboratories: Livermore, CA, USA, 1990. [Google Scholar]
- Menter, F.R. Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 1994, 32, 1598–1605. [Google Scholar] [CrossRef] [Green Version]
- Launder, B.E.; Spalding, D.B. The numerical computation of turbulent flows. Comput. Methods Appl. Mech. Eng. 1974, 3, 269–289. [Google Scholar] [CrossRef]
- Yakhot, V.; Orszag, S.A.; Thangam, S.; Gatski, T.B.; Speizale, C.G. Development of turbulence models for shear flows by a double expansion technique. Phys. Fluids 1992, 4, 1510–1520. [Google Scholar] [CrossRef] [Green Version]
- Shih, T.-H.; Liou, W.W.; Shabbir, A.; Yang, Z.; Zhu, J. A new k-ε eddy-viscosity model for high Reynolds number turbulent flows—Model development and validation. Comput. Fluids 1995, 24, 227–238. [Google Scholar] [CrossRef]
- Van Doormal, J.P.; Raithby, G.D. Enhancements of the SIMPLE method for predicting incompressible fluid flows. Numer. Heat Transf. 1984, 7, 147–163. [Google Scholar] [CrossRef]
- Leonard, B.P. A stable and accurate convective modelling procedure based on quadratic upstream interpolation. Comput. Methods Appl. Mech. Eng. 1979, 19, 59–98. [Google Scholar] [CrossRef]
- Engineering Simulation & 3D Design Software, ANSYS Fluent 18.0, Theory Guide. 2018. Available online: https://www.ansys.com (accessed on 28 November 2018).
- Kudriakov, S.; Studer, S.; Bin, C. Numerical simulation of the laminar hydrogen flame in the presence of a quenching mesh. Int. J. Hydrogen Energy 2011, 36, 2555–2559. [Google Scholar] [CrossRef]
- Marinov, N.M.; Westbrook, C.K.; Pitz, W.J. Detailed and Global Chemical Kinetics Model for Hydrogen; Lawrence Livermore National Laboratory Report UCRL-JC-120677; Lawrence Livermore National Laboratory: Livermore, CA, USA, 1995. [Google Scholar]
- Smith, G.P.; Golden, D.M.; Frenklach, M.; Moriarty, N.W.; Eiteneer, B.; Goldenberg, M.; Bowman, T.; Hansin, R.K.; Sing, S.; Gardiner, W.C., Jr.; et al. GRI-Mech. 2018. Available online: http://combustion.berkeley.edu/gri-mech/ (accessed on 11 November 2018).
- Conaire, M.O.; Curran, H.J.; Simmie, J.M.; Pitz, W.J.; Westbrook, C.K. A comprehensive modeling study of hydrogen oxidation. Int. J. Chem. Kinet. 2004, 36, 603–622. [Google Scholar] [CrossRef]
- Keromnes, A.; Metcalfe, W.K.; Heufer, K.A.; Donohoe, N.; Das, A.K.; Sung, C.J.; Herzler, J.; Naumann, C.; Griebel, P.; Mathieu, O.; et al. An experimental and detailed chemical kinetic modeling study of hydrogen and syngas mixture oxidation at elevated pressures. Combust. Flame 2013, 160, 995–1011. [Google Scholar] [CrossRef] [Green Version]
- Magnussen, B.F.; Hjertager, B.H. On mathematical models of turbulent combustion with special emphasis on soot formation and combustion. In Symposium (International) on Combustion; The Combustion Institute: Pittsburgh, PA, USA, 1976; pp. 719–729. [Google Scholar]
- Gran, I.R.; Magnussen, B.F. A numerical study of a bluff-body stabilized diffusion flame. Part 2. Influence of combustion modeling and finite-rate chemistry. Combust. Sci. Technol. 1996, 119, 191–217. [Google Scholar] [CrossRef]
- Van Oijen, A.; De Goey, L.P.H. Modelling of premixed laminar flames using flamelet-generated manifolds. Combust. Sci. Technol. 2000, 161, 113–137. [Google Scholar] [CrossRef] [Green Version]
- Peters, N. Turbulent Combustion; Cambridge University Press: Cambridge, UK, 2002. [Google Scholar]
- Poinsot, T.; Veynante, D. Theoretical and Numerical Combustion, 2nd ed.; Edwards: Philadelphia, PA, USA, 2005. [Google Scholar]
- Benim, A.C.; Iqbal, S.; Meier, W.; Joos, F.; Wiedermann, A. Numerical investigation of turbulent swirling flames with validation in a gas turbine model combustor. Appl. Therm. Eng. 2017, 110, 202–212. [Google Scholar] [CrossRef]
- Subramaniam, S.; Pope, S.B. A mixing model for turbulent reactive flows based on Euclidian minimum spanning trees. Combust. Flame 1998, 115, 487–514. [Google Scholar] [CrossRef]
- Fuel-Air Equivalence Ratio-Flame Speed Curve. Available online: http://combustion.berkeley.edu/gri_mech/version30/figs30/h2fl.gif (accessed on 18 November 2019).
Central Jet | Co-flow | |
---|---|---|
V (m/s) | 45 | 4.5 |
T (K) | 300 | 300 |
d, D (mm) | 10 | 112 |
Re | 8700 | 27,000 |
XH2 | 0.50 | 0 |
XO2 | 0 | 0.21 |
Central Jet | Co-flow | ||
---|---|---|---|
V (m/s) | 110 | 4 | |
d, D (mm) | 4.57 | 190 | |
Flame A | Flame B | ||
Re | 18,965 | 19,200 | |
T (K) | 317.5 | 1044 | 1013 |
QH2 (slm) | 25 | 190.1 | 185.2 |
QN2 (slm) | 75 | - | - |
QAIR (slm) | - | 1720 | 1720 |
T (K) | XO2 | XH2O |
---|---|---|
1010 | 0.1489 | 0.1005 |
1013 | 0.1487 | 0.1008 |
1020 | 0.1483 | 0.1016 |
1030 | 0.1477 | 0.1028 |
1040 | 0.1470 | 0.1039 |
1044 | 0.1468 | 0.1043 |
1050 | 0.1464 | 0.1050 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benim, A.C.; Pfeiffelmann, B. Comparison of Combustion Models for Lifted Hydrogen Flames within RANS Framework. Energies 2020, 13, 152. https://doi.org/10.3390/en13010152
Benim AC, Pfeiffelmann B. Comparison of Combustion Models for Lifted Hydrogen Flames within RANS Framework. Energies. 2020; 13(1):152. https://doi.org/10.3390/en13010152
Chicago/Turabian StyleBenim, Ali Cemal, and Björn Pfeiffelmann. 2020. "Comparison of Combustion Models for Lifted Hydrogen Flames within RANS Framework" Energies 13, no. 1: 152. https://doi.org/10.3390/en13010152
APA StyleBenim, A. C., & Pfeiffelmann, B. (2020). Comparison of Combustion Models for Lifted Hydrogen Flames within RANS Framework. Energies, 13(1), 152. https://doi.org/10.3390/en13010152