Formation of Soot in Oxygen-Enriched Turbulent Propane Flames at the Technical Scale
Abstract
:1. Introduction
2. Methodology
2.1. Cases
2.2. Model
2.3. Interpretation of Experimental Results
2.4. Sensitivity Analysis and Φ-T Maps
3. Results & Discussion
3.1. Experimental Results
3.2. Interpretation of Results for Air-21 and Air-32 Cases
3.3. Sensitivity Analysis
3.3.1. Temperature and Injection Profiles
3.3.2. Pressure Dependence
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dockery, D.W.; Pope, C.A.; Xu, X.; Spengler, J.D.; Ware, J.H.; Fay, M.E.; Ferris, B.G., Jr.; Speizer, F.E. An association between air pollution and mortality in six US cities. N. Engl. J. Med. 1993, 329, 1753–1759. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization. WHO Air Quality Guidelines for Particulate Matter, Ozone, Nitrogen Dioxide and Sulphur Dioxide; Global Update 2005; Summary of Risk Assessment; World Health Organization: Geneva Switzerland, 2005. [Google Scholar]
- Brunekreef, B.; Holgate, S.T. Air pollution and health. Lancet 2002, 360, 1233–1242. [Google Scholar] [CrossRef]
- Highwood, E.J.; Kinnersley, R.P. When smoke gets in our eyes: The multiple impacts of atmospheric black carbon on climate, air quality and health. Environ. Int. 2006, 32, 560–566. [Google Scholar] [CrossRef] [PubMed]
- Parliament, E. Directive (EU) 2016/2284 of the European Parliament and of the Council of 14 December 2016 on the reduction of national emissions of certain atmospheric pollutants, amending Directive 2003/35/EC and repealing Directive 2001/81/EC (Text with EEA relevance). OJL 2016, 344, 1–31. [Google Scholar]
- Merchan-Merchan, W.; Saveliev, A.V.; Kennedy, L.; Jimenez, W.C. Combustion synthesis of carbon nanotubes and related nanostructures. Progress Energy Combust. Sci. 2010, 36, 696–727. [Google Scholar] [CrossRef]
- Richter, H.; Treska, M.; Howard, J.B.; Wen, J.Z.; Thomasson, S.B.; Reading, A.A.; Jardim, P.M.; Vander Sande, J.B. Large scale combustion synthesis of single-walled carbon nanotubes and their characterization. J. Nanosci. Nanotechnol. 2008, 8, 6065–6074. [Google Scholar] [CrossRef]
- Unrau, C.J.; Axelbaum, R.L.; Fraundorf, P. Single-walled carbon nanotube formation on iron oxide catalysts in diffusion flames. J. Nanopart. Res. 2010, 12, 2125–2133. [Google Scholar] [CrossRef]
- Richter, H.; Howard, J.B. Formation of polycyclic aromatic hydrocarbons and their growth to soot—A review of chemical reaction pathways. Prog. Energy Combust. Sci. 2000, 26, 565–608. [Google Scholar] [CrossRef]
- Frenklach, M. Reaction mechanism of soot formation in flames. Phys. Chem. Chem. Phys. 2002, 4, 2028–2037. [Google Scholar] [CrossRef]
- Haynes, B.S.; Wagner, H.G. Soot formation. Prog. Energy Combust. Sci. 1981, 7, 229–273. [Google Scholar] [CrossRef]
- Wang, H. Formation of nascent soot and other condensed-phase materials in flames. Proc. Combust. Inst. 2011, 33, 41–67. [Google Scholar] [CrossRef]
- Frenklach, M.; Wang, H. Detailed modeling of soot particle nucleation and growth. Symp. (Int.) Combust. 1991, 23, 1559–1566. [Google Scholar] [CrossRef]
- D’Anna, A. Combustion-formed nanoparticles. Proc. Combust. Inst. 2009, 32, 593–613. [Google Scholar] [CrossRef]
- Dobbins, R.A. Hydrocarbon Nanoparticles Formed in Flames and Diesel Engines. Aerosol Sci. Technol. 2007, 41, 485–496. [Google Scholar] [CrossRef] [Green Version]
- D’Anna, A.; Rolando, A.; Allouis, C.; Minutolo, P.; D’Alessio, A. Nano-organic carbon and soot particle measurements in a laminar ethylene diffusion flame. Proc. Combust. Inst. 2005, 30, 1449–1456. [Google Scholar] [CrossRef]
- Bartok, W.; Sarofim, A.F. Fossil Fuel Combustion: A Source Book; Wiley: New York, NY, USA, 1991. [Google Scholar]
- Zhang, Y.; Liu, F.; Lou, C. Experimental and Numerical Investigations of Soot Formation in Laminar Coflow Ethylene Flames Burning in O2/N2 and O2/CO2 Atmospheres at Different O2 Mole Fractions. Energy Fuels 2018, 32, 6252–6263. [Google Scholar] [CrossRef]
- Jain, A.; Das, D.D.; McEnally, C.S.; Pfefferle, L.D.; Xuan, Y. Experimental and numerical study of variable oxygen index effects on soot yield and distribution in laminar co-flow diffusion flames. Proc. Combust. Inst. 2019, 37, 859–867. [Google Scholar] [CrossRef]
- Cortés, D.; Morán, J.; Liu, F.; Escudero, F.; Consalvi, J.L.; Fuentes, A. Effect of Fuels and Oxygen Indices on the Morphology of Soot Generated in Laminar Coflow Diffusion Flames. Energy Fuels 2018, 32, 11802–11813. [Google Scholar] [CrossRef]
- Escudero, F.; Fuentes, A.; Consalvi, J.L.; Liu, F.; Demarco, R. Unified behavior of soot production and radiative heat transfer in ethylene, propane and butane axisymmetric laminar diffusion flames at different oxygen indices. Fuel 2016, 183, 668–679. [Google Scholar] [CrossRef]
- Wang, Q.; Legros, G.; Bonnety, J.; Morin, C.; Matynia, A.; Consalvi, J.-L.; Liu, F. Experimental assessment of the sudden-reversal of the oxygen dilution effect on soot production in coflow ethylene flames. Combust. Flame 2017, 183, 242–252. [Google Scholar] [CrossRef] [Green Version]
- Shaddix, C.R.; Williams, T.C. The effect of oxygen enrichment on soot formation and thermal radiation in turbulent, non-premixed methane flames. Proc. Combust. Inst. 2017, 36, 4051–4059. [Google Scholar] [CrossRef] [Green Version]
- Contreras, J.; Consalvi, J.L.; Fuentes, A. Oxygen index effect on the structure of a laminar boundary layer diffusion flame in a reduced gravity environment. Proc. Combust. Inst. 2017, 36, 3237–3245. [Google Scholar] [CrossRef]
- Henríquez, R.; Demarco, R.; Consalvi, J.L.; Liu, F.; Fuentes, A. The Oxygen Index on Soot Production in Propane Diffusion Flames. Combust. Sci. Technol. 2014, 186, 504–517. [Google Scholar] [CrossRef]
- Fuentes, A.; Henríquez, R.; Nmira, F.; Liu, F.; Consalvi, J.-L. Experimental and numerical study of the effects of the oxygen index on the radiation characteristics of laminar coflow diffusion flames. Combust. Flame 2013, 160, 786–795. [Google Scholar] [CrossRef] [Green Version]
- Oh, K.C.; Shin, H.D. The effect of oxygen and carbon dioxide concentration on soot formation in non-premixed flames. Fuel 2006, 85, 615–624. [Google Scholar] [CrossRef]
- Kumfer, B.M.; Skeen, S.A.; Chen, R.; Axelbaum, R.L. Measurement and analysis of soot inception limits of oxygen-enriched coflow flames. Combust. Flame 2006, 147, 233–242. [Google Scholar] [CrossRef]
- Lee, K.-O.; Megaridis, C.M.; Zelepouga, S.; Saveliev, A.V.; Kennedy, L.A.; Charon, O.; Ammouri, F. Soot formation effects of oxygen concentration in the oxidizer stream of laminar coannular nonpremixed methane/air flames. Combust. Flame 2000, 121, 323–333. [Google Scholar] [CrossRef]
- Gülder, Ö.L. Effects of oxygen on soot formation in methane, propane, and n-Butane diffusion flames. Combust. Flame 1995, 101, 302–310. [Google Scholar] [CrossRef]
- Wang, L.; Endrud, N.; Turns, S.; D’agostini, M.; Slavejkov, A. A study of the influence of oxygen index on soot, radiation, and emission characteristics of turbulent jet flames. Combust. Sci. Technol. 2002, 174, 45–72. [Google Scholar] [CrossRef]
- Merchan-Merchan, W.; McCollam, S.; Pugliese, J.F.C. Soot formation in diffusion oxygen-enhanced biodiesel flames. Fuel 2015, 156, 129–141. [Google Scholar] [CrossRef] [Green Version]
- Beltrame, A.; Porshnev, P.; Merchan-Merchan, W.; Saveliev, A.; Fridman, A.; Kennedy, L.; Petrova, O.; Zhdanok, S.; Amouri, F.; Charon, O. Soot and NO formation in methane–oxygen enriched diffusion flames. Combust. Flame 2001, 124, 295–310. [Google Scholar] [CrossRef]
- Karataş, A.E.; Gülder, Ö.L. Soot formation in high pressure laminar diffusion flames. Prog. Energy Combust. Sci. 2012, 38, 818–845. [Google Scholar] [CrossRef]
- Joo, H.I. Soot Formation in Non-premixed Laminar Flames at Subcritical and Supercritical Pressures. Ph.D. Thesis, University of Toronto, Toronto, ON, Canada, 2010. [Google Scholar]
- Bento, D.S.; Thomson, K.A.; Gülder, Ö.L. Soot formation and temperature field structure in laminar propane–air diffusion flames at elevated pressures. Combust. Flame 2006, 145, 765–778. [Google Scholar] [CrossRef] [Green Version]
- Weber, R.; Dugue, J. Combustion Accelerated Swirling Flows in High Confinements. Prog. Energy Combust. Sci. 1992, 18, 349–367. [Google Scholar] [CrossRef]
- Andersson, K.; Johnsson, F. Flame and radiation characteristics of gas-fired O2/CO2 combustion. Fuel 2007, 86, 656–668. [Google Scholar] [CrossRef]
- Hjärtstam, S.; Johansson, R.; Andersson, K.; Johnsson, F. Computational Fluid Dynamics Modeling of Oxy-Fuel Flames: The Role of Soot and Gas Radiation. Energy Fuels 2012, 26, 2786–2797. [Google Scholar] [CrossRef]
- Gunnarsson, A.; Simonsson, J.; Bäckström, D.; Mannazhi, M.N.; Bengtsson, P.-E.; Andersson, K. Radiative Heat Transfer Modeling and in Situ Diagnostics of Soot in an 80 kWth Propane Flame with Varying Feed-Gas Oxygen Concentration. Ind. Eng. Chem. Res. 2018, 57, 12288–12295. [Google Scholar] [CrossRef]
- Bäckström, D.; Gunnarsson, A.; Gall, D.; Pei, X.; Johansson, R.; Andersson, K.; Pathak, R.K.; Pettersson, J.B. Measurement of the size distribution, volume fraction and optical properties of soot in an 80 kW propane flame. Combust. Flame 2017, 186, 325–334. [Google Scholar] [CrossRef]
- Simonsson, J.; Gunnarsson, A.; Mannazhi, M.N.; Bäckström, D.; Andersson, K.; Bengtsson, P.E. In-situ soot characterization of propane flames and influence of additives in a 100 kW oxy-fuel furnace using two-dimensional laser-induced incandescence. Proc. Combust. Inst. 2019, 37, 833–840. [Google Scholar] [CrossRef]
- Richter, H.; Granata, S.; Green, W.H.; Howard, J.B. Detailed modeling of PAH and soot formation in a laminar premixed benzene/oxygen/argon low-pressure flame. Proc. Combust. Inst. 2005, 30, 1397–1405. [Google Scholar] [CrossRef]
- Fleig, D.; Andersson, K.; Johnsson, F. Influence of operating conditions on SO3 formation during air and oxy-fuel combustion. Ind. Eng. Chem. Res. 2012, 51, 9483–9491. [Google Scholar] [CrossRef]
- Allgurén, T.; Andersson, K. Influence of KCl and SO2 on NO Formation in C3H8 Flames. Energy Fuels 2017, 31, 11413–11423. [Google Scholar] [CrossRef]
- Ekvall, T.; Andersson, K. NO formation and reduction in flames with high feed gas oxygen concentrations. In Proceedings of the Clearwater Clean Energy, Clearwater, FL, USA, 11–15 June 2017. [Google Scholar]
- Wang, L.; Haworth, D.C.; Turns, S.R.; Modest, M.F. Interactions among soot, thermal radiation, and NOx emissions in oxygen-enriched turbulent nonpremixed flames: A computational fluid dynamics modeling study. Combust. Flame 2005, 141, 170–179. [Google Scholar] [CrossRef]
Cases | O2 Injection | Oxidizer Flow | O2 in Oxidizer | O2 in Flue Gases | In-Flame Gas Measurements | Soot Measurements | |
---|---|---|---|---|---|---|---|
g/s | g/s | vol% Dry | vol% Dry | LII | SMPS | ||
Air-21 | 0 | 30.99 | 21 | 2.95 | Yes | Yes | Yes |
Air-25 | 1.45 | 26.18 | 25 | 3.57 | No | Yes | No |
Air-27 | 2.01 | 24.31 | 27 | 3.89 | No | Yes | No |
Air-30 | 2.72 | 21.97 | 30 | 4.37 | No | Yes | No |
Air-32 | 3.11 | 20.65 | 32 | 4.70 | Yes | No | No |
Air-35 | 3.62 | 18.96 | 35 | 5.20 | No | No | No |
Cases | Zone 1 | Zone 2 | Zone 3 | Zone 4 | |
---|---|---|---|---|---|
BIN1 | Air-21 | 6E-04 | 0.027 | −0.002 | 0.002 |
Air-32-NoFit | 0.003 | 0.178 | −0.041 | −0.014 | |
Air-32-Fit | 0.038 | 5.483 | −5.524 | 0 |
Cases | Zone 1 | Zone 2 | Zone 3 | Zone 4 | |
---|---|---|---|---|---|
C2H2 | Air-21 | 84.6 | −38.3 | −46.3 | 0 |
Air-32-NoFit | 73.61 | −25.00 | −48.60 | 0 | |
Air-32-Fit | 154 | 93 | −247 | 0 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Edland, R.; Allgurén, T.; Normann, F.; Andersson, K. Formation of Soot in Oxygen-Enriched Turbulent Propane Flames at the Technical Scale. Energies 2020, 13, 191. https://doi.org/10.3390/en13010191
Edland R, Allgurén T, Normann F, Andersson K. Formation of Soot in Oxygen-Enriched Turbulent Propane Flames at the Technical Scale. Energies. 2020; 13(1):191. https://doi.org/10.3390/en13010191
Chicago/Turabian StyleEdland, Rikard, Thomas Allgurén, Fredrik Normann, and Klas Andersson. 2020. "Formation of Soot in Oxygen-Enriched Turbulent Propane Flames at the Technical Scale" Energies 13, no. 1: 191. https://doi.org/10.3390/en13010191
APA StyleEdland, R., Allgurén, T., Normann, F., & Andersson, K. (2020). Formation of Soot in Oxygen-Enriched Turbulent Propane Flames at the Technical Scale. Energies, 13(1), 191. https://doi.org/10.3390/en13010191