Toward Optimization of Wood Industry Wastewater Treatment in Microbial Fuel Cells—Mixed Wastewaters Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. MFC Construction and Operation
2.2. Chemical Characteristics of Wastewater and COD Removal Efficiency Determination
3. Results and Discussion
3.1. Influence of External Resistance on Current Production in MFCs
3.2. Influence of External Resistance and Time on Wastewater Treatment Efficiency
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ahn, Y.; Hatzell, M.C.; Zhang, F.; Logan, B.E. Different electrode configurations to optimize performance of multi-electrode microbial fuel cells for generating power or treating domestic wastewater. J. Power Sources 2014, 249, 440–445. [Google Scholar] [CrossRef]
- Feng, Y.; Wang, X.; Logan, B.E.; Lee, H. Brewery wastewater treatment using air-cathode microbial fuel cells. Appl. Microbiol. Biotechnol. 2008, 78, 873–880. [Google Scholar] [CrossRef] [PubMed]
- Mohanakrishna, G.; Mohan, S.K.; Mohan, S.V. Carbon based nanotubes and nanopowder as impregnated electrode structures for enhanced power generation: Evaluation with real field wastewater. Appl. Energy 2010, 95, 31–37. [Google Scholar] [CrossRef]
- Aelterman, P.; Rabaey, K.; Clauwaert, P.; Verstraete, W. Microbial fuel cells for wastewater treatment. Water Sci. Technol. 2006, 54, 9–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Velvizhi, G.; Mohan, S.V. Biocatalyst behavior under self-induced electrogenic microenvironment in comparison with anaerobic treatment: Evaluation with pharmaceutical wastewater for multi-pollutant removal. Bioresour. Technol. 2011, 102, 10784–10793. [Google Scholar] [CrossRef] [PubMed]
- Velasquez-Orta, S.; Head, I.; Curtis, T.; Scott, K. Factors affecting current production in microbial fuel cells using different industrial wastewaters. Bioresour. Technol. 2011, 102, 5105–5112. [Google Scholar] [CrossRef] [PubMed]
- Rengasamy, K.; Berchmans, S. Simultaneous degradation of bad wine and electricity generation with the aid of the coexisting biocatalysts Acetobacter aceti and Gluconobacter roseus. Bioresour. Technol. 2012, 104, 388–393. [Google Scholar] [CrossRef]
- Karthikeyan, R.; Selvam, A.; Cheng, K.Y.; Wong, J.W.-C. Influence of ionic conductivity in bioelectricity production from saline domestic sewage sludge in microbial fuel cells. Bioresour. Technol. 2016, 200, 845–852. [Google Scholar] [CrossRef]
- Peng, X.; Tang, T.; Zhu, X.; Jia, G.; Ding, Y.; Chen, Y.; Yang, Y.; Tang, W. Remediation of acid mine drainage using microbial fuel cell based on sludge anaerobic fermentation. Environ. Technol. 2017, 38, 2400–2409. [Google Scholar] [CrossRef]
- Haavisto, J.; Dessì, P.; Chatterjee, P.; Honkanen, M.; Noori, T.; Kokko, M.; Lakaniemi, A.-M.; Lens, P.N.; Puhakka, J.A. Effects of anode materials on electricity production from xylose and treatability of TMP wastewater in an up-flow microbial fuel cell. Chem. Eng. J. 2019, 372, 141–150. [Google Scholar] [CrossRef]
- Li, Y.; Lu, A.; Ding, H.; Jin, S.; Yan, Y.; Wang, C.; Zen, C.; Wang, X. Cr(VI) reduction at rutile-catalyzed cathode in microbial fuel cells. Electrochem. Commun. 2009, 11, 1496–1499. [Google Scholar] [CrossRef]
- Li, Y.; Wu, Y.; Puranik, S.; Lei, Y.; Vadas, T.; Li, B. Metals as electron acceptors in single-chamber microbial fuel cells. J. Power Sources 2014, 269, 430–439. [Google Scholar] [CrossRef]
- Huang, L.; Liu, Y.; Yu, L.; Quan, X.; Chen, G. A new clean approach for production of cobalt dihydroxide from aqueous Co(II) using oxygen-reducing biocathode microbial fuel cells. J. Clean. Prod. 2015, 86, 441–446. [Google Scholar] [CrossRef]
- Ichihashi, O.; Hirooka, K. Removal and recovery of phosphorus as struvite from swine wastewater using microbial fuel cell. Bioresour. Technol. 2012, 114, 303–307. [Google Scholar] [CrossRef] [PubMed]
- Gude, V.G. Wastewater treatment in microbial fuel cells e an overview. J. Clean. Prod. 2016, 122, 287–307. [Google Scholar] [CrossRef]
- Integrated Pollution Prevention and Control, MInistry of Environment. 2013. Available online: http://ippc.mos.gov.pl/ippc/ (accessed on 6 November 2019).
- Food and Agriculture Organization. Global Forest Products Facts and Figures FAO of UN; Food and Agriculture Organization: Rome, Italy, 2016. [Google Scholar]
- Gude, V.G. Effect of process parameters. In Microbial Electrochemical and Fuel Cells: Fundamentals and Applications; Woodhead Publishing: Kidlington, UK, 2016. [Google Scholar]
- Costa Santos, J.B.; Silva de Barros, V.V.; Linares, J.J. The hydraulic retention time as a key parameter for the performance of a cyclically fed glycerol-based microbial fuel cell from biodiesel. J. Electrochem. Soc. 2017, 164, H3001–H3006. [Google Scholar] [CrossRef]
- Jung, S.; Regan, J.M. Influence of External Resistance on Electrogenesis, Methanogenesis, and Anode Prokaryotic Communities in Microbial Fuel Cells. Appl. Environ. Microbiol. 2010, 77, 564–571. [Google Scholar] [CrossRef] [Green Version]
- Rismani-Yazdi, H.; Christy, A.D.; Carver, S.M.; Yu, Z.; Dehority, B.A.; Tuovinen, O.H. Effect of external resistance on bacterial diversity and metabolism in cellulose-fed microbial fuel cells. Bioresour. Technol. 2011, 102, 278–283. [Google Scholar] [CrossRef]
- Lyon, D.Y.; Buret, F.; Vogel, T.M.; Monier, J.-M. Is resistance futile? Changing external resistance does not improve microbial fuel cell performance. Bioelectrochemistry 2010, 78, 2–7. [Google Scholar] [CrossRef]
- Katuri, K.P.; Scott, K.; Head, I.M.; Picioreanu, C.; Curtis, T.P. Microbial fuel cells meet with external resistance. Bioresour. Technol. 2011, 102, 2758–2766. [Google Scholar] [CrossRef]
- Zhang, B.G.; Zhou, S.G.; Zhao, H.Z.; Shi, C.H.; Kong, L.C.; Sun, J.J.; Yang, Y.; Ni, J.R. Factors affecting the performance of microbial fuel cells for sulfide and vanadium (V) treatment. Bioprocess. Biosyst. Eng. 2010, 33, 187–194. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Fu, B.; Xi, J.; Hu, H.-Y.; Liang, P.; Huang, X.; Zhang, X. Remediation of simulated malodorous surface water by columnar air-cathode microbial fuel cells. Sci. Total. Environ. 2019, 687, 287–296. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Kim, B.; Kim, J.; Lee, T.; Yu, J. Electricity generation and microbial community in microbial fuel cellusing low-pH distillery wastewater at different external resistances. J. Biotechnol. 2014, 186, 175–180. [Google Scholar] [CrossRef] [PubMed]
- Pham, H.T.; Vu, P.H.; Nguyen, T.T.T.; Bui, H.V.T.; Tran, H.T.T.; Tran, H.M.; Nguyen, H.Q.; Kim, H.B. A laboratory-scale study of the applicability of a halophilic sediment bioelectrochemical system for in situ reclamation of water and sediment in brackish aquaculture ponds: Effects of operational conditions on performance. J. Microbiol. Biotechnol. 2019, 29, 1607–1623. [Google Scholar] [CrossRef]
- Li, J.-T.; Zhang, S.-H.; Hua, Y.-M. Performance of denitrifying microbial fuel cell subjected to variation in pH, COD concentration and external resistance. Water Sci. Technol. 2013, 68, 250–256. [Google Scholar] [CrossRef]
- Logan, B.; Cheng, S.; Watson, V.; Estadt, G. Graphite Fiber Brush Anodes for Increased Power Production in Air-Cathode Microbial Fuel Cells. Environ. Sci. Technol. 2007, 41, 3341–3346. [Google Scholar] [CrossRef]
- Cheng, S.; Liu, H.; Logan, B.E. Increased performance of single-chamber microbial fuel cells using an improved cathode structure. Electrochem. Commun. 2006, 8, 489–494. [Google Scholar] [CrossRef]
- Karthikeyan, R.; Kumar, K.S.; Murugesan, M.; Berchmans, S.; Yegnaraman, V. Bioelectrocatalysis of Acetobacter aceti and Gluconobacter roseus for current generation. Environ. Sci. Technol. 2009, 43, 8684–8689. [Google Scholar] [CrossRef]
- Woods, J.; Mellon, M. Thiocyanate Method for Iron: A Spectrophotometric Study. Ind. Eng. Chem. Anal. Ed. 1941, 13, 551–554. [Google Scholar] [CrossRef]
- PN-72/C-04559. Water and Waste Water Tests for Suspended Matters—Determination of Total, Mineral and Volatile Suspended Matters by Gravimetric Method (in Polish); Polish Committee for Standarization: Warsaw, Poland, 1973. [Google Scholar]
- PN-C-04541. Water and Sewage—Determination of the Dry Residue Residue on Ignition Loss on Ignition and Solute Substances Mineral Solute Substances and Volatile Solute Substances (in Polish); Polish Committee for Standarization: Warsaw, Poland, 1978. [Google Scholar]
- Dedkov, Y.M.; Elizarova, O.V.; Kel’Ina, S.Y. Dichromate method for the determination of chemical oxygen demand. J. Anal. Chem. 2000, 55, 777–781. [Google Scholar] [CrossRef]
- Toczyłowska-Mamińska, R.; Szymona, K.; Kloch, M. Bioelectricity production from wood hydrothermal-treatment wastewater: Enhanced power generation in MFC-fed mixed wastewaters. Sci. Total. Environ. 2018, 634, 586–594. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Kim, K.-Y.; Saikaly, P.E.; Logan, B.E. The impact of new cathode materials relative to baseline performance of microbial fuel cells all with the same architecture and solution chemistry. Energy Environ. Sci. 2017, 10, 1025–1033. [Google Scholar] [CrossRef] [Green Version]
- Angosto, J.M.; Fernández-López, J.A.; Godinez, C. Brewery and liquid manure wastewaters as potential feedstocks for microbial fuel cells: A performance study. Environ. Technol. 2015, 36, 68078. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Son, M.; Xiong, B.; Kumar, M.; Bucs, S.; Vrouwenvelder, J.S.; Logan, B.E. Effective biofouling control using periodic H2O2 cleaning with CuO modified and plain spacer. ACS Sustain. Chem. Eng. 2019, 7, 9582–9587. [Google Scholar] [CrossRef]
- Liu, H.; Ramnarayanan, R.; Logan, B.E. Production of Electricity during Wastewater Treatment Using a Single Chamber Microbial Fuel Cell. Environ. Sci. Technol. 2004, 38, 2281–2285. [Google Scholar] [CrossRef]
- Liu, H.; Logan, B.E. Electricity Generation Using an Air-Cathode Single Chamber Microbial Fuel Cell in the Presence and Absence of a Proton Exchange Membrane. Environ. Sci. Technol. 2004, 38, 4040–4046. [Google Scholar] [CrossRef]
- Ketep, S.F.; Fourest, E.; Bergel, A. Experimental and theoretical characterization of microbial bioanodes formed in pulp and paper mill effluent in electrochemically controlled conditions. Bioresour. Technol. 2013, 149, 117–125. [Google Scholar] [CrossRef] [Green Version]
- Durruty, I.; Bonanni, P.S.; Gonzalez, J.F.; Busalmen, J.P. Evaluation of potato-processing wastewater treatment in a microbial fuel cell. Bioresour. Technol. 2012, 105, 81–87. [Google Scholar] [CrossRef]
- Huang, L.; Cheng, S.; Rezaei, F.; Logan, B.E. Reducing organic loads in wastewater effluents from paper recycling plants using microbial fuel cells. Environ. Technol. 2009, 30, 499–504. [Google Scholar] [CrossRef]
- Ahn, Y.; Logan, B.E. Effectiveness of domestic wastewater treatment using microbial fuel cells at ambient and mesophilic temperatures. Bioresour. Technol. 2010, 101, 469–475. [Google Scholar] [CrossRef]
- Min, B.; Logan, B.E. Continuous Electricity Generation from Domestic Wastewater and Organic Substrates in a Flat Plate Microbial Fuel Cell. Environ. Sci. Technol. 2004, 38, 5809–5814. [Google Scholar] [CrossRef] [PubMed]
- Corbella, C.; Puigagut, J. Improving domestic wastewater treatment efficiency with constructed wetland microbial fuel cells: Influence of anode material and external resistance. Sci. Total. Environ. 2018, 2018, 1406–1414. [Google Scholar] [CrossRef] [PubMed]
Wastewater Type | MFC Type | Power Density | Current Density | Wastewater Treatment Efficiency | Reference |
---|---|---|---|---|---|
distillery wastewater | dual chamber | R = 5000 Ω; 280 mW/m2 | R = 5000 Ω; 5.9 mA/m2 | not investigated | [26] |
R = 100 Ω; 25 mW/m2 | R = 100 Ω; 53 mA/m2 | ||||
brewery wastewater:domestic wastewater (1:100) | dual chamber | R = 50 kΩ; <3 mW/m2 | R = 50 kΩ; 8 mA/m2 | R = 50 kΩ; ΔCOD = 60% | [23] |
R = 25 kΩ; ca. 3 mW/m2 | R = 25 kΩ; 13 mA/m2 | R = 25 kΩ; ΔCOD = 85% | |||
R = 10 kΩ; ca.3 mW/m2 | R = 10 kΩ; 25 mA/m2 | R = 10 kΩ; ΔCOD = 87% | |||
R = 1 kΩ; ca. 10 mW/m2 | R = 1 kΩ, 130 mA/m2 | R = 10 kΩ; ΔCOD = 88% | |||
R = 100 Ω; 3 mW/m2 | R = 100 Ω; 274 mA/m2 | R = 0.1 kΩ, ΔCOD = 92% | |||
domestic wastewater fed acetate | single chamber | R from 10 Ω to 10 kΩ, ca. 30 mW/m2 for all applied resistances | R from 10 Ω to 1000 Ω, ca. 150 mA/m2 for all applied resistances | not investigated | [22] |
high sulfide wastewater | dual chamber | not investigated | not investigated | V4+ increased from 116.2 to 177.3 mg/L when R decreased from 1000 Ω to 50 Ω | [24] |
malodorous surface water | single chamber | not investigated | not investigated | R = 2 Ω; R = 30 Ω; R = 5000 Ω; maximum ΔCOD = 86% for all tested resistances | [25] |
artificial brackish water | dual chamber | not investigated | R = 10 Ω; 1.65 mA/m2 R = 100 Ω; 1.75 mA/m2 R = 188 Ω; 0.8 mA/m2 R = 1875 Ω; 0.3 mA/m2 R = 4690 Ω; 0.1 mA/m2 | no influence of external resistance on COD removal (maximum ΔCOD = 30% vs control) | [27] |
synthetic wastewater | dual chamber | R from 5 Ω to 200 Ω; maximum 170 mW/m2 for R = 50 Ω | R from 5 Ω to 200 Ω; maximum current 1.8 A/m2 for R= 5 Ω | R from 5 Ω to 200 Ω; maximum nitrate removal rate for R = 10 Ω (54.80 ± 0.01 gm−3 d−1) | [28] |
wine wastewater | dual chamber | R = 600 Ω; 191 mW/m2 | R = 600 Ω; 360 mA/m2 | R = 600 Ω; ΔCOD = 59% | [7] |
R = 900 Ω; 80 mW/m2 | R = 900 Ω; 203 mA/m2 | R = 900 Ω; ΔCOD = 41% | |||
R = 1400 Ω; 40 mW/m2 | R = 1400 Ω; 112 mA/m2 | R =1400 Ω; ΔCOD = 50% | |||
wood industry wastewater:domestic wastewater (1:1) | single chamber | R = 100 Ω; 14 mW/m2 | R = 100 Ω; 443 mA/m2 | R = 100 Ω; ΔCOD = 66% | this work |
R = 500 Ω; 25 mW/m2 | R = 500 Ω; 269 mA/m2 | R = 500 Ω; ΔCOD = 65% | |||
R = 1000 Ω; 112 mW/m2 | R = 1000 Ω; 400 mA/m2 | R = 1000 Ω; ΔCOD = 94% | |||
R = 2000 Ω; 175 mW/m2 | R = 2000 Ω; 354 mA/m2 | R = 2000 Ω; ΔCOD = 80% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kloch, M.; Toczyłowska-Mamińska, R. Toward Optimization of Wood Industry Wastewater Treatment in Microbial Fuel Cells—Mixed Wastewaters Approach. Energies 2020, 13, 263. https://doi.org/10.3390/en13010263
Kloch M, Toczyłowska-Mamińska R. Toward Optimization of Wood Industry Wastewater Treatment in Microbial Fuel Cells—Mixed Wastewaters Approach. Energies. 2020; 13(1):263. https://doi.org/10.3390/en13010263
Chicago/Turabian StyleKloch, Monika, and Renata Toczyłowska-Mamińska. 2020. "Toward Optimization of Wood Industry Wastewater Treatment in Microbial Fuel Cells—Mixed Wastewaters Approach" Energies 13, no. 1: 263. https://doi.org/10.3390/en13010263
APA StyleKloch, M., & Toczyłowska-Mamińska, R. (2020). Toward Optimization of Wood Industry Wastewater Treatment in Microbial Fuel Cells—Mixed Wastewaters Approach. Energies, 13(1), 263. https://doi.org/10.3390/en13010263