Heat and Mass Transfer in Hydromagnetic Second-Grade Fluid Past a Porous Inclined Cylinder under the Effects of Thermal Dissipation, Diffusion and Radiative Heat Flux
Abstract
:1. Literature Survey
2. Mathematical Modelling
3. Solution Methodology
4. Results Interpretation
5. Outcomes of Analysis
- (i)
- Increasing aptitude of velocity within the boundary layer region is depicted against the curvature parameter;
- (ii)
- It is found that the velocity profile upsurges against the viscoelastic parameter whereas it declines by uplifting the Darcy parameter;
- (iii)
- The thermal Biot number raises the temperature profile and also enriches the magnitude of the Nusselt number;
- (iv)
- Concentration of the Biot number causes growth in the concentration profile and augments the mass flux coefficient;
- (v)
- Dufour and Soret effects enhance the temperature field and depreciate the concentration profile.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Nomenclature
Dimensional velocity components | Dimensionless velocity component | ||
T | Dimensional temperature | θ | Dimensionless temperature |
C | Dimensional concentration | Dimensionless concentration | |
Density | Mass diffusivity | ||
Curvature parameter | Darcy parameter | ||
Dufour number | Soret number | ||
Thermal Grashof number | Gc | Solutal Grashof number | |
Thermal Biot number | Radiation parameter | ||
Dimensionless similarity variable | Concentration Biot number | ||
Nusselt number | Skin friction coefficient | ||
Sherwood number | Dimensional curvature parameter | ||
Viscoelastic parameter | Fluid temperature | ||
Ambient fluid temperature | Ambient fluid concentration |
References
- Vejravelu, K.; Roper, T. Flow and heat transfer in a second-grade fluid over a stretching sheet. Int. J. Non Linear Mech. 1999, 34, 1031–1036. [Google Scholar] [CrossRef]
- Rajeswari, G.K.; Rathna, S.L. Flow of a Particular Class of non-Newtonian Visco-elastic and Visco-elastic Fluids near a Stagnation Point. Z. Angew. Math. Phys. 1962, 13, 43–57. [Google Scholar] [CrossRef]
- Garg, V.K.; Rajagopal, K.R. Flow of a non-Newtonian Fluid Past a Wedge. Acta Mech. 1991, 88, 113–123. [Google Scholar] [CrossRef]
- Fetecau, C. Starting Solutions for the Motion of a Second Grade Fluid Due to Longitudnal and Torsional Oscillations of a Circular Cylinder. Int. J. Eng. Sci. 2006, 44, 788–796. [Google Scholar] [CrossRef]
- Bilal, S.; Mustafa, Z.; Rehman, K.U.; Malik, M.M. MHD Second Grade NanoFluid Flow Induced by a Rotatory Cone. J. Nanofluids 2019, 8, 876–884. [Google Scholar] [CrossRef]
- Abel, M.S.; Mahesha, N.; Malipatil, S.B. Heat Transfer Due to MHD Slip Flow of a Second-Grade Liquid Over a Stretching Sheet Through a Porous Medium with Non Uniform Heat Source/Sink. Chem. Eng. Commun. 2011, 198, 191–213. [Google Scholar] [CrossRef]
- Mushtaq, M.; Asghar, S.; Hossain, M.A. Mixed Convection Flow of Second Grade Fluid along a Vertical Stretching Flat Surface with Variable Surface Temperature. Heat Mass Transf. 2007, 43, 1049–1061. [Google Scholar] [CrossRef]
- Cortell, R. MHD Flow and Mass Transfer of an Electrically Conducting Fluid of Second Grade in a Porous Medium over a Stretching Sheet with Chemically Reactive Species. Chem. Eng. Process. 2007, 46, 721–728. [Google Scholar] [CrossRef]
- Merkin, J.H. Natural Convection Boundary-Layer Flow on a Vertical Surface with Newtonian Heating. Int. J. Heat Fluid Flow 1994, 15, 392–398. [Google Scholar] [CrossRef]
- Salleh, M.Z.; Nazar, R.; Pop, I. Boundary layer flow and heat transfer over a stretching sheet with Newtonian heating. J. Taiwan Inst. Chem. Eng. 2010, 41, 651–655. [Google Scholar] [CrossRef]
- Haq, R.U.; Nadeem, S.; Khan, Z.; Okedayo, T. Convective heat transfer and MHD effects on Casson nanofluid flow over a shrinking sheet. Cent. Eur. J. Phys. 2014, 129, 862–871. [Google Scholar] [CrossRef]
- Nadeem, S.; Haq, R.U.; Akbar, N.S. MHD three-dimensional boundary layer flow of Casson nanofluid past a linearly stretching sheet with convective boundary condition. IEEE Trans. Nanotechnol. 2014, 13, 1326–1332. [Google Scholar] [CrossRef]
- Kameswaran, P.K.; Sibanda, P.; Murti, A.S.N. Nanofluid flow over a permeable surface with convective boundary conditions and radiative heat transfer. Math. Probl. Eng. 2013, 201219. [Google Scholar] [CrossRef]
- Bakar, N.A.A.; Zaimi, W.M.K.A.W.; Hamid, R.A.; Bidin, B.; Ishak, A. Boundary layer flow over a stretching sheet with a convective boundary condition and slip effect. World Appl. Sci. J. 2012, 17, 49–53. [Google Scholar]
- Hayat, T.; Shehzad, S.A.; Qasim, M.; Obaidat, S. Flow of a second-grade fluid with convective boundary conditions. Int. J. Therm. Sci. 2011, 15, S253–S261. [Google Scholar] [CrossRef]
- Makinde, O.D.; Aziz, A. Boundary layer flow of a nanofluid past a stretching sheet with a convective boundary condition. Int. J. Therm. Sci. 2011, 50, 1326–1332. [Google Scholar] [CrossRef]
- Merkin, J.H.; Pop, I. The forced convection flow of a uniform stream over a flat surface with a convective surface boundary condition, Commun. Nonlinear Sci. Numer. Simul. 2011, 16, 3602–3609. [Google Scholar] [CrossRef]
- Kothandapani, M.; Prakash, J. Effects of thermal radiation parameter and magnetic field on the peristaltic motion of Williamson nanofluid in a tapered asymmetric channel. Int. J. Heat Mass Tran. 2015, 81, 234–245. [Google Scholar] [CrossRef]
- Kumar, K.G.; Rudraswamy, N.G.; Gireesha, B.J.; Manjunatha, S. Nonlinear thermal radiation effect on Williamson fluid with particle-liquid suspension over a stretching surface. Results Phys. 2017, 7, 3196–3202. [Google Scholar] [CrossRef]
- Khan, M.; Hussain, M.; Azam, M. Magnetohydrodynamic flow of Carreau fluid over a convectively heated surface in the presence of thermal radiation. J. Magn. Magn. Mater. 2016, 412, 63–68. [Google Scholar] [CrossRef]
- Waqas, M.; Khan, M.I.; Hayat, T.; Alsaedi, A. Numerical simulation for magneto Carreau nanofluid model with thermal radiation: A revised model. Comput. Method. Appl. M. 2017, 324, 640–653. [Google Scholar] [CrossRef]
- Goodarzi, M.; Safaei, M.R.; Oztop, H.K.; Karimipour, A.; Sadighinezhad, E.; Dahari, M.; Kazi, S.N.; Jomhari, N. Numerical study of entropy generation due to coupled laminar and turbulent mixed convection and radiation in an enclosure filled with a semitransparent medium. Sci. World J. 2014. [Google Scholar] [CrossRef] [PubMed]
- Podarjani, H.; Aghakhani, S.; Karimpour, A.; Afrand, M.; Goodarzi, M. Investigation of free convection heat transfer and entropy generation of nanofluid flow inside a cavity affected by magnetic field by magnetic field and radiation. J. Therm. Anal. Calorim. 2019, 37, 997–1019. [Google Scholar]
- Aghaei, A.; Sheikhzadeh, G.A.; Goodarzi, M.; Hasani, H.; Damirchi, H.; Afrand, M. Effect of horizontal and vertical elliptic baffles inside an enclosure on the mixed convection of a MWCNTs-water nanofluid and its entropy generation. Eur. Phys. J. Plus 2018, 133, 486–497. [Google Scholar] [CrossRef]
- Hirshfelder, J.O.; Bird, R.C. Molecular Theory of Gases and Liquids; John Wiley: New York, NY, USA, 1954. [Google Scholar]
- Afify, A.A. Similarity solution in MHD effects of thermal diffusion and diffusionthermo on free convective heat and mass transfer over a stretching surfaceconsidering suction or injection. Commun. Nonlinear Sci. Numer. Simul. 2009, 14, 2202–2214. [Google Scholar] [CrossRef]
- Bhaatacharyya, K.; Layek, G.C.; Seth, G.S. Soret and Dufour effects on convective heat and mass transfer in stagnation point flow towards a shrinking sheet. Phys. Scr. 2014, 89, 095203. [Google Scholar] [CrossRef]
- Awad, F.G.; Sibanda, P.; Khidir, A.A. Thermo diffusion effects on magneto-nano fluid flow over a stretching sheet. Bound. Value Prob. 2013. [Google Scholar] [CrossRef] [Green Version]
- Goyal, M.; Bhrgava, R. Numerical study of thermodiffusion effects on boundary layer flow of nanofluids over a power law stretching sheet. Inst. Mech. Eng. 2014, 17, 591–604. [Google Scholar] [CrossRef]
- Khan, U.; Mohyuddin, S.T.; Mohsin, B.B. Convective heat transfer and thermo-diffusion effects on flow of nanofluid towards a permeable stretching sheetsaturated by a porous medium. Aerosp. Sci. Technol. 2015, 50, 196–203. [Google Scholar] [CrossRef]
- Hayat, T.; Saeed, Y.; Asad, S.; Alsaedi, A. Convective heat and mass transfer in flow by an inclined stretching cylinder. J. Mol. Liq. 2016, 220, 573–580. [Google Scholar] [CrossRef]
- Bagherzadeh, S.A.; Jalali, E.; Sarafraz, M.M.; Akbari, O.A.; Karimipour, A.; Goodarzi, M.; Bach, Q.V. Effects of magnetic field on micro cross jet injection of dispersed nanoparticles in a microchannel. Int. J. Numer. Meth. Fluid Flow 2019. [Google Scholar] [CrossRef]
- Goshayeshi, H.M.; Goodarzi, M.; Safaei, M.R.; Dahari, M. Experimental study on the effect of inclination angle on heat transfer enhancement of a ferrofluid in a closed loop oscillating heat pipe under magnetic field. Exper. Therm. Fluid Sci. 2016, 74, 265–270. [Google Scholar] [CrossRef]
- Goshayeshi, H.R.; Goodarzi, M.; Dahari, M. Effect of magnetic field on the heat transfer rate of kerosene/Fe2O3 nanofluid in a copper oscillating heat pipe. Exper. Therm. Fluid Sci. 2015, 68, 663–668. [Google Scholar] [CrossRef]
- Yousefzadeh, S.; Rajabi, H.; Ghajari, N.; Sarafraz, M.M.; Akbari, O.A.; Goodarz, M. Numerical investigation of mixed convection heat transfer behavior of nanofluid in a cavity with different heat transfer areas. J. Therm. Analy. Calorimetry 2019, 1–25. [Google Scholar] [CrossRef]
- Tian, Z.; Etedali, S.; Afrand, M.; Abdollahi, A.; Goodarzi, M. Experimental study of the effect of various surfactants on surface sediment and pool boiling heat transfer coefficient of silica/DI water nano-fluid. Powder Technol. 2019, 356, 391–402. [Google Scholar] [CrossRef]
- Bahmani, M.H.; Akbari, O.A.; Zarringhalam, M.; Shabani, G.A.S.; Goodarzi, M. Forced convection in a double tube heat exchanger using nanofluids with constant and variable thermophysical properties. Int. J. Numer. Methd. Fluid Flow 2019. [Google Scholar] [CrossRef]
Hayat et al. [31] | Present Results | ||||||
---|---|---|---|---|---|---|---|
0.1 | 0.2 | 0.2 | 0.2 | 1 | 0.1427 | 0.142683 | |
0.0 | 0.1397 | 0.139746 | |||||
0.1 | 0.1427 | 0.142683 | |||||
0.12 | 0.1433 | 0.143252 | |||||
0.1 | 0.1417 | 0.141627 | |||||
0.3 | 0.1436 | 0.143621 | |||||
0.5 | 0.1452 | 0.145236 | |||||
0.2 | 0.1427 | 0.142683 | |||||
0.4 | 0.1439 | 0.143921 | |||||
0.6 | 0.1450 | 0.145011 | |||||
0.1434 | 0.143397 | ||||||
0.1427 | 0.142683 | ||||||
0.1417 | 0.141653 | ||||||
0.1 | 0.1445 | 0.144551 | |||||
0.3 | 0.1409 | 0.140885 | |||||
0.5 | 0.1376 | 0.137455 | |||||
0.9 | 0.1394 | 0.139384 | |||||
1.0 | 0.1427 | 0.142683 | |||||
1.2 | 0.1480 | 0.148027 |
Hayat et al. [31] | Present Results | ||||||
---|---|---|---|---|---|---|---|
0.1 | 0.2 | 0.2 | 0.5 | 0.1 | 0.9 | 0.1427 | 0.142683 |
0.3 | 0.1712 | 0.171117 | |||||
0.5 | 0.1983 | 0.198211 | |||||
0.7 | 0.2049 | 0.224187 | |||||
0.3 | 0.1900 | 0.189984 | |||||
0.4 | 0.2278 | 0.227806 | |||||
0.5 | 0.2588 | 0.258763 | |||||
0.3 | 0.1391 | 0.139068 | |||||
0.4 | 0.1362 | 0.136198 | |||||
0.5 | 0.1339 | 0.133862 | |||||
0.3 | 0.1475 | 0.147474 | |||||
0.7 | 0.1379 | 0.137879 | |||||
1.1 | 0.1282 | 0.128200 | |||||
0.2 | 0.1310 | 0.130941 | |||||
0.3 | 0.1194 | 0.119422 | |||||
0.4 | 0.1081 | 0.108115 | |||||
0.7 | 0.1442 | 0.144269 | |||||
1.2 | 0.1411 | 0.141060 | |||||
1.6 | 0.1397 | 0.139623 |
Hayat et al. [31] | Present Results | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
0.1 | 1.0 | 0.1 | 0.2 | 0.2 | 0.5 | 0.1 | 0.9 | 0.2 | 0.1445 | 0.144411 |
0.0 | 0.1421 | 0.142061 | ||||||||
0.1 | 0.1445 | 0.144411 | ||||||||
0.12 | 0.1449 | 0.144864 | ||||||||
0.9 | 0.1447 | 0.144664 | ||||||||
1.0 | 0.1445 | 0.144411 | ||||||||
1.2 | 0.1441 | 0.144013 | ||||||||
0.3 | 0.1448 | 0.144730 | ||||||||
0.5 | 0.1451 | 0.145036 | ||||||||
0.7 | 0.1454 | 0.145323 | ||||||||
0.3 | 0.1432 | 0.143138 | ||||||||
0.4 | 0.1422 | 0.142127 | ||||||||
0.5 | 0.1413 | 0.141304 | ||||||||
0.3 | 0.1924 | 0.192309 | ||||||||
0.4 | 0.2307 | 0.230657 | ||||||||
0.5 | 0.2621 | 0.262084 | ||||||||
0.3 | 0.1441 | 0.144029 | ||||||||
0.6 | 0.1446 | 0.144601 | ||||||||
0.9 | 0.1452 | 0.145170 | ||||||||
0.3 | 0.1465 | 0.146412 | ||||||||
0.4 | 0.1475 | 0.147384 | ||||||||
0.5 | 0.1484 | 0.148338 | ||||||||
0.9 | 0.1445 | 0.144411 | ||||||||
1.2 | 0.1520 | 0.151954 | ||||||||
1.6 | 0.1586 | 0.158605 | ||||||||
0.4 | 0.1411 | 0.141043 | ||||||||
0.5 | 0.1395 | 0.139376 | ||||||||
0.6 | 0.1378 | 0.137719 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bilal, S.; Majeed, A.H.; Mahmood, R.; Khan, I.; Seikh, A.H.; Sherif, E.-S.M. Heat and Mass Transfer in Hydromagnetic Second-Grade Fluid Past a Porous Inclined Cylinder under the Effects of Thermal Dissipation, Diffusion and Radiative Heat Flux. Energies 2020, 13, 278. https://doi.org/10.3390/en13010278
Bilal S, Majeed AH, Mahmood R, Khan I, Seikh AH, Sherif E-SM. Heat and Mass Transfer in Hydromagnetic Second-Grade Fluid Past a Porous Inclined Cylinder under the Effects of Thermal Dissipation, Diffusion and Radiative Heat Flux. Energies. 2020; 13(1):278. https://doi.org/10.3390/en13010278
Chicago/Turabian StyleBilal, Sardar, Afraz Hussain Majeed, Rashid Mahmood, Ilyas Khan, Asiful H. Seikh, and El-Sayed M. Sherif. 2020. "Heat and Mass Transfer in Hydromagnetic Second-Grade Fluid Past a Porous Inclined Cylinder under the Effects of Thermal Dissipation, Diffusion and Radiative Heat Flux" Energies 13, no. 1: 278. https://doi.org/10.3390/en13010278
APA StyleBilal, S., Majeed, A. H., Mahmood, R., Khan, I., Seikh, A. H., & Sherif, E. -S. M. (2020). Heat and Mass Transfer in Hydromagnetic Second-Grade Fluid Past a Porous Inclined Cylinder under the Effects of Thermal Dissipation, Diffusion and Radiative Heat Flux. Energies, 13(1), 278. https://doi.org/10.3390/en13010278