Pool Boiling Heat Transfer Coefficient of Low-Pressure Glow Plasma Treated Water at Atmospheric and Reduced Pressure
Abstract
:1. Introduction
2. Experimental Setup and Procedure
3. Measurement Errors
4. Results and Discussion
4.1. Boiling at Atmospheric Pressure
4.2. Boiling at Reduced Pressure
4.3. Thermal Conductivity
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Nomenclature
A | area (m2) |
h | heat transfer coefficient (kW·m−2·K−1) |
P | heating power (W) |
q | heat flux (kW·m−2) |
t | temperature (°C or K) |
Abbreviations | |
DW | Demineralized Water |
GPTW | Low-pressure glow plasma treated water |
HTC | Heat transfer coefficient |
LPGP | Low-pressure glow plasma |
RW | Raw water |
References
- Park, I.S.; Park, S.M.; Ha, J.S. Design and application of thermal vapor compressor for multi-effect desalination plant. Desalination 2005, 182, 199–208. [Google Scholar] [CrossRef]
- Zajaczkowski, B. Optimizing performance of a three-bed adsorption chiller using new cycle time allocation and mass recovery. Appli. Ther. Eng. 2016. [Google Scholar] [CrossRef]
- Pan, Q.; Peng, J.; Wang, H.; Sun, H.; Wang, R. Experimental investigation of an adsorption air-conditioner using silica gel-water working pair. Sol. Energy 2019, 64–71. [Google Scholar] [CrossRef]
- Ren, J.; Qian, Z.; Yao, Z.; Gan, N.; Zhang, Y. Thermodynamic Evaluation of LiCl-H2O and LiBr-H2O Absorption Refrigeration Systems Based on a Novel Model and Algorithm. Energies 2019, 12, 3037. [Google Scholar] [CrossRef] [Green Version]
- López-Zavala, R.; Velázquez-Limón, N.; González-Uribe, L.A.; Aguilar-Jiménez, J.A.; Alvarez-Mancilla, J.; Acuña, A.; Islas, S. A novel LiBr/H2O absorption cooling and desalination system with three pressure levels. Int. J. Refrig. 2019, 99, 469–478. [Google Scholar] [CrossRef]
- Dong, J.; Wang, W.; Han, Z.; Ma, H.; Deng, Y.; Su, F.; Xinxiang, P. Experimental investigation of the steam ejector in a single-effect thermal vapor compression desalination system driven by a low-temperature heat source. Energies 2018, 11, 2282. [Google Scholar] [CrossRef] [Green Version]
- Giraud, F. Vaporization of Water at Subatmospheric Pressure: Fundamentals of Boiling Phenomena and Path towards the Design of Compact Evaporators for Sorption Chillers. Ph.D. Thesis, École Doctorale MEGA, Lyon, France, 2015. [Google Scholar]
- Mori, S.; Aznam, S.M.T.; Okuyama, K. Enhancement of the critical heat flux in saturated pool boiling of water by nanoparticle-coating and a honeycomb porous plate. Int. J. Heat Mass Transf. 2015, 80, 1–6. [Google Scholar] [CrossRef]
- Xu, P.; Li, Q.; Xuan, Y. Enhanced boiling heat transfer on composite porous surface. Int. J. Heat Mass Transf. 2015, 80, 107–114. [Google Scholar] [CrossRef]
- Jun, S.; Kim, J.; Son, D.; Kim, H.Y.; You, S.M. Enhancement of Pool Boiling Heat Transfer in Water Using Sintered Copper Microporous Coatings. Nucl. Eng. Technol. 2016, 48, 932–940. [Google Scholar] [CrossRef] [Green Version]
- Halon, T.; Zajaczkowski, B.; Michaie, S.; Rulliere, R.; Bonjour, J. Enhanced tunneled surfaces for water pool boiling heat transfer under low pressure. Int. J. Heat Mass Transf. 2018. [Google Scholar] [CrossRef]
- Kiyomura, I.S.; Manetti, L.L.; da Cunha, A.P.; Ribatski, G.; Cardoso, E.M. An analysis of the effects of nanoparticles deposition on characteristics of the heating surface and ON pool boiling of water. Int. J. Heat Mass Transf. 2017. [Google Scholar] [CrossRef] [Green Version]
- Wen, D. Influence of nanoparticles on boiling heat transfer. Appl. Therm. Eng. 2012. [CrossRef]
- Jones, B.J.; McHale, J.P.; Garimella, S.V. The Influence of Surface Roughness on Nucleate Pool Boiling Heat Transfer. Int. J. Heat Transf. 2009, 131, 121009. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Ji, X.; Xu, J. Pool boiling heat transfer on copper foam covers with water as working fluid. Int. J. Therm. Sci. 2010, 49, 1227–1237. [Google Scholar] [CrossRef]
- Shi, B.; Wang, Y.B.; Chen, K. Pool boiling heat transfer enhancement with copper nanowire arrays. Appl. Therm. Eng. 2015, 75, 115–121. [Google Scholar] [CrossRef]
- Wang, H.; Yang, Y.; He, M.; Qiu, H. Subcooled flow boiling heat transfer in a microchannel with chemically patterned surfaces. Int. J. Heat Mass Transf. 2019. [Google Scholar] [CrossRef]
- McGillis, W.R.; Fitch, J.S.; Hamburgen, W.R.; Carey, V.P. Pool Boiling Enhancement Techniques for Water at Low Pressure; WRL Research Report 90/9; IEEE: Piscataway, NJ, USA, 1990; p. 33. [Google Scholar]
- You, S.M.; Kim, J.H.; Kim, K.H. Effect of nanoparticles on critical heat flux of water in pool boiling heat transfer. Appl. Phys. Lett. 2003, 83, 3374–3376. [Google Scholar] [CrossRef]
- Kwark, S.M.; Kumar, R.; Moreno, G.; Yoo, J.; You, S.M. Pool boiling characteristics of low concentration nanofluids. Int. J. Heat Mass Transf. 2010, 53, 972–981. [Google Scholar] [CrossRef]
- Kim, H.; Ahn, H.S.; Kim, M.H. On the Mechanism of Pool Boiling Critical Heat Flux Enhancement in Nanofluids. J. Heat Transf. 2010, 132, 061501. [Google Scholar] [CrossRef]
- Chopkar, M.; Das, A.K.; Manna, I.; Das, P.K. Pool boiling heat transfer characteristics of ZrO2-water nanofluids from a flat surface in a pool. Heat Mass Transf. 2008, 44, 999–1004. [Google Scholar] [CrossRef]
- Otsuka, I.; Ozeki, S. Does Magnetic Treatment of Water Change Its Properties? J. Phys. Chem. B 2006, 110, 1509–1512. [Google Scholar] [CrossRef] [PubMed]
- Rashmei, Z.; Bornasi, H.; Ghoranneviss, M. Evaluation of treatment and disinfection of water using cold atmospheric plasma. J. Water Health 2016, 14, 609–616. [Google Scholar] [CrossRef] [PubMed]
- Murawski, M.; Schwarz, T.; Grygier, J.; Patkowski, K.; Oszczęda, Z.; Jelkin, I.; Kosiek, A.; Gruszecki, T.M.; Szymanowska, A.; Skrzypek, T.; et al. The utility of nanowater for ram semen cryopreservation. Exp. Biol. Med. 2015, 240, 611–617. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coutinho, N.M.; Silveira, M.R.; Rocha, R.S.; Moraes, J.; Ferreira, M.V.S.; Pimentel, T.C.; Freitas, M.Q.; Silva, M.C.; Raices, R.S.L.; Ranadheera, C.; et al. Cold plasma processing of milk and dairy products. Trends Food Sci. Technol. 2018, 74, 56–68. [Google Scholar] [CrossRef]
- Mandal, R.; Singh, A.; Singh, A.P. Recent developments in cold plasma decontamination technology in the food industry. Trends Food Sci. Technol. 2018, 80, 93–103. [Google Scholar] [CrossRef]
- Hawrylak-Nowak, B.; Dresler, S.; Matraszek-Gawron, R.; Oszczęda, Z.; Pogorzelec, M. The water treated with low-frequency low-pressure glow plasma enhances the phytoavailability of selenium and promotes the growth of selenium-treated cucumber plants. Acta Sci. Pol. Hortorum Cultus 2018, 17, 109–116. [Google Scholar] [CrossRef]
- Pisulewska, E.; Ciesielski, W.; Jackowska, M.; Gąstoł, M.; Oszczęda, Z.; Tomasik, P. Cultivation of peppermint (Mentha piperita rubescens) using water treated with low-pressure, low-temperature glow plasma of low frequency. Electron. J. Polish Agric. Univ. 2018, 21. [Google Scholar] [CrossRef]
- Patange, A.; Lu, P.; Boehm, D.; Cullen, P.J.; Bourke, P. Efficacy of cold plasma functionalised water for improving microbiological safety of fresh produce and wash water recycling. Food Microbiol. 2019, 84, 103226. [Google Scholar] [CrossRef]
- Bialopiotrowicz, T.; Ciesielski, W.; Domanski, J.; Doskocz, M.; Khachatryan, K.; Fiedorowicz, M.; Graz, K.; Koloczek, H.; Kozak, A.; Oszczeda, Z. Structure and Physicochemical Properties of Water Treated with Low-Temperature Low-Frequency Glow Plasma. Curr. Phys. Chem. 2016, 6, 312–320. [Google Scholar] [CrossRef]
- Van Nguyen, D.; Ho, P.Q.; Van Pham, T.; Van Nguyen, T.; Kim, L. A study on treatment of surface water using cold plasma for domestic water supply. Environ. Eng. Res. 2019, 24, 412–417. [Google Scholar] [CrossRef]
- Mystkowska, J.; Dabrowski, J.R.; Kowal, K.; Niemirowicz, K.; Car, H. Physical and chemical properties of deionized water and saline treated with low-pressure and low-temperature plasma. Chemik 2013, 67, 719–724. [Google Scholar]
- Lemmon, E.W.; Bell, I.H.; Huber, M.L.; McLinden, M.O. NIST Standard Reference Database: REFPROP Reference Fluid Thermodynamic and Transport Properties; version 9.1 2018; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2018.
Reference | pH | Density g/cm3 | Electric Conductivity μS/cm | Surface Tension mN/m | Viscosity Pa·s | |
---|---|---|---|---|---|---|
[33] | DW | 5.4 | 1.068 | 13.53 | 34 | 0.97 |
GPTW | 7.85 | 1.070 | 403 | 45 | 1.01 | |
[24] | DW | 8.43 | - | - | - | - |
GPTW | 4.15 7.14 1 | - | - | - | - | |
[32] | RW | 6.7 ± 0.00 | - | 160 ± 17.3 | - | - |
GPTW | 7.2 ± 0.1 | - | 246.7 ± 15.3 | - | - | |
[31] | DW | 5.56 ± 0.00 | 0.9980 | - | 72.20 ± 0.21 | - |
GPTW 15 min | 5.19 ± 0.03 | 0.9984 | - | 72.51 ± 0.27 | - | |
GPTW 30 min | 5.19 ± 0.03 | 0.9984 | - | 72.47 ± 0.24 | - | |
GPTW 60 min | 6.41 ± 0.01 | 0.9984 | - | 72.42 ± 0.23 | - | |
GPTW 90 min | 5.83 ± 0.00 | 0.9984 | - | 72.42 ± 0.23 | - |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gil, B.; Rogala, Z.; Dorosz, P. Pool Boiling Heat Transfer Coefficient of Low-Pressure Glow Plasma Treated Water at Atmospheric and Reduced Pressure. Energies 2020, 13, 69. https://doi.org/10.3390/en13010069
Gil B, Rogala Z, Dorosz P. Pool Boiling Heat Transfer Coefficient of Low-Pressure Glow Plasma Treated Water at Atmospheric and Reduced Pressure. Energies. 2020; 13(1):69. https://doi.org/10.3390/en13010069
Chicago/Turabian StyleGil, Bartosz, Zbigniew Rogala, and Paweł Dorosz. 2020. "Pool Boiling Heat Transfer Coefficient of Low-Pressure Glow Plasma Treated Water at Atmospheric and Reduced Pressure" Energies 13, no. 1: 69. https://doi.org/10.3390/en13010069
APA StyleGil, B., Rogala, Z., & Dorosz, P. (2020). Pool Boiling Heat Transfer Coefficient of Low-Pressure Glow Plasma Treated Water at Atmospheric and Reduced Pressure. Energies, 13(1), 69. https://doi.org/10.3390/en13010069