Influence of Pyrolysis Temperature on Product Distribution and Characteristics of Anaerobic Sludge
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characterization of Anaerobic Sludge
2.2. Pyrolysis
2.3. Product Yields
2.4. Chemical Analysis
3. Results and Discussion
3.1. Characteristics of Anaerobic Sludge
3.2. Product Yield and Mass Conversion Efficiency
3.3. Quality of Products
3.3.1. Char
3.3.2. Bio-Oil
3.3.3. Gas
3.4. Energy Yield and Recovery
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Laturnus, F.; von Arnold, K.; Gron, C. Organic Contaminants from Sewage Sludge Applied to Agricultural Soils. Environ. Sci. Pollut. Res. 2007, 14, 53–60. [Google Scholar] [CrossRef]
- Karaca, C.; Sözen, S.; Orhon, D.; Okutan, H. High temperature pyrolysis of sewage sludge as a sustainable process for energy recovery. Waste Manag. 2019, 78, 217–226. [Google Scholar] [CrossRef]
- Sheng, G.P.; Yu, H.Q. Characterization of extracellular polymeric substances of aerobic and anaerobic sludge using three-dimensional excitation and emission matrix fluorescence spectroscopy. Water Res. 2006, 40, 1233–1239. [Google Scholar] [CrossRef]
- Han, L.; Sun, H.; Ro, K.S.; Sun, K.; Libra, J.A.; Xing, B. Removal of antimony (iii) and cadmium (ii) from aqueous solution using animal manure-derived hydrochars and pyrochars. Bioresour. Technol. 2017, 234, 77–85. [Google Scholar] [CrossRef] [Green Version]
- McKendry, P. Energy production from biomass (part 1): Overview of biomass. Bioresour. Technol. 2002, 83, 37–46. [Google Scholar] [CrossRef]
- Kan, T.; Strezov, V.; Evans, T.J. Lignocellulosic biomass pyrolysis: A review of product properties and effects of pyrolysis parameters. Renew. Sustain. Energy Rev. 2016, 57, 1126–1140. [Google Scholar] [CrossRef]
- Riley, D.; Forster, C. An evaluation of an autothermal aerobic digestion system. Process Saf. Environ. Prot. 2002, 80, 100–104. [Google Scholar] [CrossRef]
- Demirbas, A. Methylation of wood fatty and resin acids for production of biodiesel. Fuel 2011, 90, 2273–2279. [Google Scholar] [CrossRef]
- Wzorek, M. Characterisation of the properties of alternative fuels containing sewage sludge. Fuel Process. Technol. 2012, 104, 80–89. [Google Scholar] [CrossRef]
- Jin, Z.; Chang, F.; Meng, F.; Wang, C.; Meng, Y.; Liu, X.; Wu, J.; Zuo, J.; Wang, K. Sustainable pyrolytic sludge-char preparation on improvement of closed-loop sewage sludge treatment: Characterization and combined in-situ application. Chemosphere 2017, 184, 1043–1053. [Google Scholar] [CrossRef]
- Zhou, J.; Ma, H.; Gao, M.; Sun, W.; Zhu, C.; Chen, X. Changes of chromium speciation and organic matter during low-temperature pyrolysis of tannery sludge. Environ. Sci. Pollut. Res. 2018, 25, 2495–2505. [Google Scholar] [CrossRef] [PubMed]
- Molino, A.; Chianese, S.; Musmarra, D. Biomass gasification technology: The state of the art overview. J. Energy Chem. 2016, 25, 10–25. [Google Scholar] [CrossRef]
- Molino, A.; Iovane, P.; Donatelli, A.; Braccio, G.; Chianese, S.; Musmarra, D. Steam gasification of refuse-derived fuel in a rotary kiln pilot plant: Experimental tests. Chem. Eng. Trans. 2013, 32, 337–342. [Google Scholar]
- Chianese, S.; Fail, S.; Binder, M.; Rauch, R.; Hofbauer, H.; Molino, A.; Blasi, A.; Musmarra, D. Experimental investigations of hydrogen production from CO catalytic conversion of tar rich syngas by biomass gasification. Catal. Today 2016, 277, 182–191. [Google Scholar] [CrossRef]
- García-Moncada, N.; González-Castaño, M.; Ivanova, S.; Centeno, M.Á.; Romero-Sarria, F.; Odriozola, J.A. New concept for old reaction: Novel WGS catalyst design. Appl. Catal. B Environ. 2018, 238, 1–5. [Google Scholar] [CrossRef]
- Raheem, A.; Liu, H.; Ji, G.; Zhao, M. Gasification of lipid-extracted microalgae biomass promoted by waste eggshell as CaO catalyst. Algal Res. 2019, 42, 101601. [Google Scholar] [CrossRef]
- Maguyon, M.C.C.; Capareda, S.C. Evaluating the effects of temperature on pressurized pyrolysis of Nannochloropsis oculata based on products yields and characteristics. Energy Convers. Manag. 2013, 76, 764–773. [Google Scholar] [CrossRef]
- Guedes, R.E.; Luna, A.S.; Torres, A.R. Operating parameters for bio-oil production in biomass pyrolysis: A review. J. Anal. Appl. Pyrolysis 2018, 129, 134–149. [Google Scholar] [CrossRef]
- Figueiredo, C.; Lopes, H.; Coser, T.; Vale, A.; Busato, J.; Aguiar, N.; Novotny, E.; Canel-las, L. Influence of pyrolysis temperature on chemical and physical properties of biochar from sewage sludge. Arch. Agron. Soil Sci. 2018, 64, 881–889. [Google Scholar] [CrossRef]
- Menndez, J.; Inguanzo, M.; Pis, J. Microwave-induced pyrolysis of sewage sludge. Water Res. 2002, 36, 3261–3264. [Google Scholar] [CrossRef]
- Parikh, J.; Channiwala, S.; Ghosal, G. A correlation for calculating HHV from proximate analysis of solid fuels. Fuel 2005, 84, 487–494. [Google Scholar] [CrossRef]
- Monnet, F. An introduction to anaerobic digestion of organic wastes. In Remade Scotland; Final Report Biogasmax; 2003. [Google Scholar]
- Mohan, D.; Pittman, C.U., Jr.; Steele, P.H. Pyrolysis of Wood/Biomass for Bio-oil: A Critical Review. Energy Fuels 2006, 20, 848–889. [Google Scholar] [CrossRef]
- Yorgun, S.; Sensoz, S.; Kockar, O.M. Characterization of the pyrolysis oil produced in the slow pyrolysis of sunflower-extracted bagasse. Biomass Bioenergy 2001, 20, 141–148. [Google Scholar] [CrossRef]
- Bu, Q.; Lei, H.; Ren, S.; Wang, L.; Zhang, Q.; Tang, J.; Ruan, R. Production of phenols and biofuels by catalytic microwave pyrolysis of lignocellulosic biomass. Bioresour. Technol. 2012, 108, 274–279. [Google Scholar] [CrossRef] [PubMed]
- Pan, P.; Hu, C.; Yang, W.; Li, Y.; Dong, L.; Zhu, L.; Tong, D.; Qing, R.; Fan, Y. The direct pyrolysis and catalytic pyrolysis of Nannochloropsis sp. residue for renewable bio-oils. Bioresour. Technol. 2010, 101, 4593–4599. [Google Scholar] [CrossRef]
- Valliyappan, T.; Ferdous, D.; Bakhshi, N.N.; Dalai, A.K. Production of hydrogen and syngas via steam gasification of glycerol in a fixed-bed reactor. Top. Catal. 2008, 49, 59–67. [Google Scholar] [CrossRef]
- Haykiri-Acma, H.; Yaman, S.; Kucukbayrak, S. Effect of heating rate on the pyrolysis yields of rapeseed. Renew. Energy 2006, 31, 803–810. [Google Scholar] [CrossRef]
Biomass Characteristics | Anaerobic Sludge* | Stabilized Sludge | Raw Sludge∞ | Wood | |
---|---|---|---|---|---|
Bulk density (kg/m3) | 412 | – | – | – | |
HHV (MJ/kg) | 20.53 | 16.6† | 23.45 | 20.5• | |
Proximate analysis | VCM | 62.85 | 55.48‡ | – | 79.72+ |
Fixed Carbon | 22.74 | 12.46‡ | – | 19.92+ | |
Ash | 14.4 | 23.9‡ | 0.36+ | ||
Ultimate analysis | C | 38.50 | 25.5† | 52.7 | 53.1• |
H | 5.084 | 3.55† | 8.39 | 6.4• | |
N | 1.332 | 4.18† | 3.38 | 0.4• | |
S | 1.199 | 1.15† | 0.66 | – | |
O | 39.49 | 27.24† | – | 42.7• |
Temperature (°C) | Composition (% Vol) | Heating Value (MJ/m3) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
H2 | CO | CH4 | C2H4 | C2H6 | C3H6 | C3H8 | O2 | N2 | CO2 | ||
400 | 2.3 | 5.7 | 5.9 | 0.8 | 1.4 | 0.8 | 0.5 | 7.4 | 40.9 | 34.3 | 5.9 |
500 | 3.7 | 15.1 | 10.9 | 1.5 | 2.6 | 1.0 | 0.7 | 5.5 | 24.7 | 34.3 | 11 |
600 | 17.1 | 9.4 | 23.1 | 1.4 | 4.2 | 1.2 | 0.7 | 4.3 | 17.3 | 21 | 18.1 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hanif, M.U.; Zwawi, M.; Capareda, S.C.; Iqbal, H.; Algarni, M.; Felemban, B.F.; Bahadar, A.; Waqas, A. Influence of Pyrolysis Temperature on Product Distribution and Characteristics of Anaerobic Sludge. Energies 2020, 13, 79. https://doi.org/10.3390/en13010079
Hanif MU, Zwawi M, Capareda SC, Iqbal H, Algarni M, Felemban BF, Bahadar A, Waqas A. Influence of Pyrolysis Temperature on Product Distribution and Characteristics of Anaerobic Sludge. Energies. 2020; 13(1):79. https://doi.org/10.3390/en13010079
Chicago/Turabian StyleHanif, Muhammad Usman, Mohammed Zwawi, Sergio C. Capareda, Hamid Iqbal, Mohammed Algarni, Bassem F. Felemban, Ali Bahadar, and Adeel Waqas. 2020. "Influence of Pyrolysis Temperature on Product Distribution and Characteristics of Anaerobic Sludge" Energies 13, no. 1: 79. https://doi.org/10.3390/en13010079
APA StyleHanif, M. U., Zwawi, M., Capareda, S. C., Iqbal, H., Algarni, M., Felemban, B. F., Bahadar, A., & Waqas, A. (2020). Influence of Pyrolysis Temperature on Product Distribution and Characteristics of Anaerobic Sludge. Energies, 13(1), 79. https://doi.org/10.3390/en13010079