Simplified Building Thermal Model Development and Parameters Evaluation Using a Stochastic Approach
Abstract
:1. Introduction
- Model for a building envelope (walls, floors, roofs, etc.). These models are then used to develop complete zone model.
- Model for a complete zone.
2. Parameters Identification
2.1. Reference Model
- the conduction heat transfer is considered to be one-dimensional due to the high ratio of height to thickness of the building envelope. This lead to maximum heat transfer in one direction,
- there is no heat source or sink within the wall,
- effects of thermal bridge are neglected, and
- properties of the building materials are independent of temperature.
Crank-Nicolson Finite Difference Model (CNFDM)
2.2. 3R2C Thermal Network Model
2.3. Particle Swarm Optimization
2.4. Simulation Results of Parametric Identification
Comparison with Conduction Transfer Function (CTF) Model
3. Detailed Modeling Approach for a Case Study Building
3.1. Building Description
3.2. Thermal Network Model—CESI Smart Building
- heat conduction occurs through the building envelope,
- convective heat transfer at building envelope surfaces and floors,
- solar gains through windows and solar radiation absorption in external walls,
- radiation heat transfer within the zone walls,
- effect of thermal bridge is neglected,
- heat storage is not considered in windows, and
- impact of wind velocity variation on the convective heat exchange coefficient of the wall surface is neglected, hence the convective resistances are considered constant.
3.3. Model Validation
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
ASHRAE | The American Society of Heating, Refrigerating and Air-Conditioning Engineers |
BAS | Building Automation System |
BACS | Building Automation Control System |
BBC | Bâtiment à Basse Consommation |
CNFDM | Crank-Nicolson Finite Difference Method |
EU | European Union |
FDM | Finite Difference Method |
HDKR | Hay–Davies–Klucher–Reindl |
HVAC | Heating, Ventilation and Air-Conditioning |
LINEACT | Laboratoire d’Innovation Numérique pour les Entreprises et les. Apprentissages au service de la |
Compétitivité des Territoires. | |
NZEB | Nearly Zero-Energy Building |
PDE | Partial Differential Equations |
PIA | Programme d’Investissements d’Avenir |
PSO | Particle Swarm Optimization |
RC | Resistor-Capacitor |
References
- European Commission. Communication From the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions; European Commission: Brussels, Belgium, 2011. [Google Scholar]
- Todorovic, B. Towards Zero Energy Buildings: New and Retrofitted Existing Buildings. In Proceedings of the 2011 IEEE 3rd International Symposium on Exploitation of Renewable Energy Sources (EXPRES), Subotica, Serbia, 11–12 March 2011; pp. 7–14. [Google Scholar]
- Manic, M.; Wijayasekara, D.; Amarasinghe, K.; Rodriguez-Andina, J.J. Building Energy Management Systems: The Age of Intelligent and Adaptive Buildings. IEEE Ind. Electron. Mag. 2016, 10, 25–39. [Google Scholar] [CrossRef]
- Pedersen, T.H.; Hedegaard, R.E.; Petersen, S. Space Heating Demand Response Potential of Retrofitted Residential Apartment Blocks. Energy Build. 2017, 141, 158–166. [Google Scholar] [CrossRef]
- Ma, Y.; Borrelli, F.; Hencey, B.; Coffey, B.; Bengea, S.; Haves, P. Model Predictive Control for the Operation of Building Cooling Systems. IEEE Trans. Control Syst. Technol. 2011, 20, 796–803. [Google Scholar]
- Mantovani, G.; Ferrarini, L. Temperature Control of a Commercial Building with Model Predictive Control Techniques. IEEE Trans. Ind. Electron. 2014, 62, 2651–2660. [Google Scholar] [CrossRef]
- Xie, D.; Yu, L.; Jiang, T.; Zou, Y. Distributed Energy Optimization for HVAC Systems in University Campus Buildings. IEEE Access 2018, 6, 59141–59151. [Google Scholar] [CrossRef]
- Sant’Anna, D.; Dos Santos, P.; Vianna, N.; Romero, M. Indoor Environmental Quality Perception and Users’ Satisfaction of Conventional and Green Buildings in Brazil. Sustain. Cities Soc. 2018, 43, 95–110. [Google Scholar] [CrossRef]
- Caniato, M.; Gasparella, A. Discriminating People’s Attitude towards Building Physical Features in Sustainable and Conventional Buildings. Energies 2019, 12, 1429. [Google Scholar] [CrossRef] [Green Version]
- Leaman, A.; Bordass, B. Are Users More Tolerant of ‘Green’ Buildings? Build. Res. Inf. 2007, 35, 662–673. [Google Scholar] [CrossRef]
- Andersen, R.V.; Toftum, J.; Andersen, K.K.; Olesen, B.W. Survey of Occupant Behaviour and Control of Indoor Environment in Danish Dwellings. Energy Build. 2009, 41, 11–16. [Google Scholar] [CrossRef]
- Masoso, O.; Grobler, L. The Dark Side of Occupants’ Behaviour on Building Energy Use. Energy Build. 2010, 42, 173–177. [Google Scholar] [CrossRef]
- Boodi, A.; Beddiar, K.; Amirat, Y.; Benbouzid, M. Model Predictive Control-Based Thermal Comfort and Energy Optimization. In Proceedings of the IECON 2019-45th Annual Conference of the IEEE Industrial Electronics Society, Lisbon, Portugal, 14–17 October 2019; 1, pp. 5801–5806. [Google Scholar]
- Killian, M.; Kozek, M. Ten Questions Concerning Model Predictive Control for Energy Efficient Buildings. Build. Environ. 2016, 105, 403–412. [Google Scholar] [CrossRef]
- Boodi, A.; Beddiar, K.; Benamour, M.; Amirat, Y.; Benbouzid, M. Intelligent Systems for Building Energy and Occupant Comfort Optimization: A State of the Art Review and Recommendations. Energies 2018, 11, 2604. [Google Scholar] [CrossRef] [Green Version]
- Yao, Y.; Yu, Y. Modeling and Control in Air-Conditioning Systems; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Bueno, B.; Norford, L.; Pigeon, G.; Britter, R. A Resistance-Capacitance Network Model for the Analysis of the Interactions between the Energy Performance of Buildings and the Urban Climate. Build. Environ. 2012, 54, 116–125. [Google Scholar] [CrossRef]
- Xu, X.; Wang, S. A Simplified Dynamic Model for Existing Buildings Using CTF and Thermal Network Models. Int. J. Therm. Sci. 2008, 47, 1249–1262. [Google Scholar] [CrossRef]
- Fraisse, G.; Viardot, C.; Lafabrie, O.; Achard, G. Development of a Simplified and Accurate Building Model Based on Electrical Analogy. Energy Build. 2002, 34, 1017–1031. [Google Scholar] [CrossRef]
- Ramallo-González, A.P.; Eames, M.E.; Coley, D.A. Lumped Parameter Models for Building Thermal Modelling: An Analytic Approach to Simplifying Complex Multi-Layered Constructions. Energy Build. 2013, 60, 174–184. [Google Scholar] [CrossRef] [Green Version]
- Gouda, M.M.; Danaher, S.; Underwood, C.P. Building Thermal Model Reduction Using Nonlinear Constrained Optimization. Build. Environ. 2002, 37, 1255–1265. [Google Scholar] [CrossRef]
- Xu, X.; Wang, S. Optimal Simplified Thermal Models of Building Envelope Based on Frequency Domain Regression Using Genetic Algorithm. Energy Build. 2007, 39, 525–536. [Google Scholar] [CrossRef]
- Boodi, A.; Beddiar, K.; Amirat, Y.; Benbouzid, M. A Numerical Approach for Buildings Reduced Thermal Model Parameters Evaluation. IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2019; Volume 322, p. 012015. [Google Scholar]
- Shi, Y. Particle Swarm Optimization. IEEE Connect. 2004, 2, 8–13. [Google Scholar]
- Özışık, M.N.; Orlande, H.R.B.; Colaco, M.J.; Cotta, R.M. Finite Difference Methods in Heat Transfer, 2nd ed.; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2017. [Google Scholar]
- Davies, M.G. Building Heat Transfer; John Wiley & Sons, Ltd: Chichester, UK, 2004. [Google Scholar] [CrossRef]
- Lee, W.T. Tridiagonal Matrices: Thomas Algorithm; MS6021; Scientific Computation, University of Limerick: Limerick, Ireland, 2011. [Google Scholar]
- Lorenz, F.; Masy, G. Méthode d’évaluation de l’économie d’énergie Apportée Par l’intermittence de Chauffage Dans Les Bâtiments. In Traitement par Differences Finies d’un Model a Deux Constantes de Temps; Report No. GM820130-01; Faculte des Sciences Appliquees, University de Liege: Liege, Belgium, 1982. [Google Scholar]
- Rouchier, S. Solving Inverse Problems in Building Physics: An Overview of Guidelines for a Careful and Optimal Use of Data. Energy Build. 2018, 166, 178–195. [Google Scholar] [CrossRef]
- Harb, H.; Boyanov, N.; Hernandez, L.; Streblow, R.; Müller, D. Development and Validation of Grey-Box Models for Forecasting the Thermal Response of Occupied Buildings. Energy Build. 2016, 117, 199–207. [Google Scholar] [CrossRef]
- Cai, J.; Braun, J.E. A Practical and Scalable Inverse Modeling Approach for Multi-Zone Buildings. In Proceedings of the 9th International Conference on System Simulation in Buildings, Liege, Belgium, 10–12 December 2014. [Google Scholar]
- Shi, Y.; Eberhart, R.C. Parameter Selection in Particle Swarm Optimization. In International Conference on Evolutionary Programming; Springer: Berlin/Heidelberg, Germany, 1998; pp. 591–600. [Google Scholar]
- Reyes-Sierra, M.; Coello, C.C. Multi-Objective Particle Swarm Optimizers: A Survey of the State-of-the-Art. Int. J. Comput. Intell. Res. 2006, 2, 287–308. [Google Scholar]
- Shi, Y.; Eberhart, R.C. Empirical Study of Particle Swarm Optimization. In Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406), Washington, DC, USA, 6–9 July 1999; Volume 3, pp. 1945–1950. [Google Scholar]
- Eberhart, R.C.; Shi, Y. Comparison between Genetic Algorithms and Particle Swarm Optimization. In International Conference on Evolutionary Programming; Springer: Berlin/Heidelberg, Germany, 1998; pp. 611–616. [Google Scholar]
- Engelbrecht, A.P. Computational Intelligence: An Introduction, 2nd ed.; John Wiley & Sons: Chichester, UK; Hoboken, NJ, USA, 2007. [Google Scholar]
- American Society of Heating, Refrigerating and Air-Conditioning Engineers Inc. ASHRAE Handbook–Fundamentals; American Society of Heating, Refrigerating and Air-Conditioning Engineers Inc.: Atlanta, GA, USA, 2017. [Google Scholar]
- Clarke, J.A. Energy Simulation in Building Design, 2nd ed.; Butterworth-Heinemann: Oxford, UK, 2001. [Google Scholar]
- Stephenson, D.G.; Mitalas, G.P. Calculation of Heat Conduction Transfer Functions for Multi-Layers Slabs. ASHRAE Trans. 1971, 77, 117–126. [Google Scholar]
- Hensen, J.; Lamberts, R. (Eds.) Building Performance Simulation for Design and Operation; Spon Press: London, UK; New York, NY, USA, 2011. [Google Scholar]
- Bâtiments Basse Consommation, France. Technical Report, Guide AITF/EDF. 2008. Available online: https://www.aitf.fr/system/files/files (accessed on 20 December 2019).
- Ahmed, K.; Kurnitski, J.; Olesen, B.W. Data for Occupancy Internal Heat Gain Calculation in Main Building Categories. Data Brief 2017, 15, 1030–1034. [Google Scholar] [CrossRef] [Green Version]
- Liu, B.Y.; Jordan, R.C. The Long-Term Average Performance of Flat-Plate Solar-Energy Collectors: With Design Data for the US, Its Outlying Possessions and Canada. Sol. Energy 1963, 7, 53–74. [Google Scholar] [CrossRef]
- Chwieduk, D.A. Recommendation on Modelling of Solar Energy Incident on a Building Envelope. Renew. Energy 2009, 34, 736–741. [Google Scholar] [CrossRef]
- Duffie, J.A.; Beckman, W.A. Solar Engineering of Thermal Processes; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- Dincer, I.; Colpan, C.O.; Kizilkan, O.; Ezan, M.A. Progress in Clean Energy, Novel Systems and Applications; Springer: Cham, Switzerland, 2015; Volume 2. [Google Scholar]
- Maasoumy, M.; Sangiovanni-Vincentelli, A. Total and Peak Energy Consumption Minimization of Building Hvac Systems Using Model Predictive Control. IEEE Des. Test Comput. 2012, 29, 26–35. [Google Scholar] [CrossRef] [Green Version]
Thermal System | Electrical System | |
---|---|---|
Source | Temperature (T) | Voltage (V) |
Heat flux () | Current (I) | |
Element | Thermal conductivity (k) | Conductivity () |
Thermal resistance (R) | Electrical resistance (R) | |
Thermal capacity (C) | Electrical capacitance (C) |
Construction Class | Thermal Properties | Parametric Values R (m·K/W and C (kJ/m·K) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Thickness | Conductivity | Density | Specific Heat | ||||||||
mm | W/(m·K) | kg/m | kJ/(kg·K) | ||||||||
Light-weight (LW) | 3.1498 | 76.852 | 0.29477 | 2.7812 | 0.07383 | 20.694 | 56.157 | ||||
Stucco | 25.00 | 0.692 | 1858 | 0.84 | |||||||
Insulation (batt) | 125.00 | 0.043 | 91 | 0.96 | |||||||
Plaster/Gypsum | 20.00 | 0.727 | 1602 | 0.84 | |||||||
Medium-weight (MW) | 3.8238 | 183.724 | 0.0937 | 3.6735 | 0.0565 | 69.664 | 114.059 | ||||
Brick | 101.60 | 0.89 | 1920 | 0.79 | |||||||
Insulation board | 50.80 | 0.03 | 43 | 1.21 | |||||||
Air space | 50.00 | 0.02514 | 1.205 | 1.00 | |||||||
Gypsum | 20.00 | 0.727 | 1602 | 0.84 | |||||||
Heavy-weight (HW) | 2.1917 | 402.102 | 0.1417 | 1.9018 | 0.1481 | 205.196 | 196.906 | ||||
Brick | 101.60 | 0.89 | 1920 | 0.79 | |||||||
Heavyweight concrete | 203.2 | 0.53 | 1280 | 0.84 | |||||||
Insulation board | 50.80 | 0.03 | 43 | 1.21 | |||||||
Gypsum | 20.00 | 0.727 | 1602 | 0.84 |
Construction Class | Step Excitation | Periodic Excitation |
---|---|---|
Light-weight(LW) | 1.239 × | 1.651 × |
Medium-weight(MW) | 1.311 × | 1.365 × |
Heavy-weight(HW) | 1.495 × | 2.208 × |
Sensors | Measurement Range | Error Range |
---|---|---|
Outdoor temperature | −40 °C to +75 °C | ±1 °C |
Indoor temperature | −20 °C to +70 °C | ±1 °C |
Indoor illuminance | 50 lx to 20,000 lx | ±20% |
Relative humidity | 5% to 95% | ±5% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boodi, A.; Beddiar, K.; Amirat, Y.; Benbouzid, M. Simplified Building Thermal Model Development and Parameters Evaluation Using a Stochastic Approach. Energies 2020, 13, 2899. https://doi.org/10.3390/en13112899
Boodi A, Beddiar K, Amirat Y, Benbouzid M. Simplified Building Thermal Model Development and Parameters Evaluation Using a Stochastic Approach. Energies. 2020; 13(11):2899. https://doi.org/10.3390/en13112899
Chicago/Turabian StyleBoodi, Abhinandana, Karim Beddiar, Yassine Amirat, and Mohamed Benbouzid. 2020. "Simplified Building Thermal Model Development and Parameters Evaluation Using a Stochastic Approach" Energies 13, no. 11: 2899. https://doi.org/10.3390/en13112899
APA StyleBoodi, A., Beddiar, K., Amirat, Y., & Benbouzid, M. (2020). Simplified Building Thermal Model Development and Parameters Evaluation Using a Stochastic Approach. Energies, 13(11), 2899. https://doi.org/10.3390/en13112899