Modeling of Humidity in Passenger Cars Equipped with Mechanical Ventilation
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
- The absolute humidity in a passenger car cabin depends primarily on the air change rate and the number of passengers. For a small air change rate, the absolute humidity increases as a function of time.
- Human-generated humidity in the car cabin depends mainly on the temperature inside the car and the age of the person, and it can range from 20 to 180 g/(h × person) for an adult in the temperature range of 20–43 °C, while for a child under six years old, it ranges from 8 to 19.5 g/(h × person) in the temperature range 22–34 °C. It should be noted that the temperature 43 °C is the extreme temperature inside the vehicle. The results of the study indicate that inside a car, children under the age of six generate about four times less humidity than adults.
- Opening the windows quickly reduces the humidity in the car, which after some time reaches a value equal to the absolute humidity of the outside air. A similar effect was also obtained for the temperature.
- Driving a car with open windows keeps the temperature and absolute humidity more or less constant.
- The most efficient way to get rid of humidity from a car is to open windows or increase the efficiency of supply ventilation, which supplies air from the outside, while humidity is removed by leaks in the car cabin.
- The presented model can be used to predict the humidity in a passenger car and can be implemented in the automatic ventilation control systems of passenger cars.
Author Contributions
Funding
Conflicts of Interest
References
- Okokon, E.O.; Taimisto, P.; Turunen, A.W.; Amoda, O.A.; Fasasi, A.E.; Adeyemi, L.G.; Juutilainen, J.; Lanki, T. Particulate air pollution and noise: Assessing commuter exposure in Africa's most populous city. J. Transp. Health 2018, 9, 150–160. [Google Scholar] [CrossRef]
- Romanska-Zapala, A.; Bomberg, M.; Dechnik, M.; Fedorczak-Cisak, M.; Furtak, M. On preheating of the outdoor ventilation air. Energies 2020, 13, 15. [Google Scholar] [CrossRef] [Green Version]
- Finell, E.; Nätti, J. The combined effect of poor perceived indoor environmental quality and psychosocial stressors on long-term sickness absence in the workplace: A follow-up study. Int. J. Environ. Res. Public Health 2019, 16, 4997. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zemitis, J.; Borodinecs, A.; Frolova, M. Measurements of moisture production caused by various sources. Energ. Build. 2016, 127, 884–891. [Google Scholar] [CrossRef]
- Aquino, S.; Alves de Lima, J.E.; Branco do Nascimento, A.P.; Reis, F.C. Analysis of fungal contamination in vehicle air filters and their impact as a bioaccumulator on indoor air quality. Air Qual. Atmos. Health 2018, 11, 1143–1153. [Google Scholar] [CrossRef]
- Kim, H.-H.; Park, G.-Y.; Lee, J.-H. Concentrations of particulate matter, carbon dioxide, VOCs and risk assessment inside Korean taxis and ships. Environ. Sci. Pollut. Res. 2019, 26, 9619–9631. [Google Scholar] [CrossRef] [PubMed]
- Gładyszewska-Fiedoruk, K.; Krawczyk, D.A. Ocena przyzwyczajeń Polaków oraz korzystania z wentylacji i klimatyzacji w świetle badań ankietowych (Assessment of the habits of Poles connected with ventilation and air conditioning systems usage—based on results of survey). In Rynek Gazu; Henryk, K., Ed.; Kaprint: Lublin, Poland, 2014; pp. 135–146. (In Polish) [Google Scholar]
- Błaszczyk, E.; Rogula-Kozłowska, W.; Klejnowski, K.; Kubiesa, P.; Fulara, I.; Mielżyńska-Švach, D. Indoor air quality in urban and rural kindergartens: Short-term studies in Silesia, Poland. Air Qual. Atmos. Health 2017, 10, 1207–1220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mansour, C.; Nader, W.B.; Breque, F.; Haddad, M.; Nemer, M. Assessing additional fuel consumption from cabin thermal comfort and auxiliary needs on the worldwide harmonized light vehicles test cycle. Transport. Res. D Transp. Environ. 2018, 62, 139–151. [Google Scholar] [CrossRef]
- Alahmer, A.; Omar, M.A.; Mayyas, A.; Dongri, S. Effect of relative humidity and temperature control on in-cabin thermal comfort state: Thermodynamic and psychometric analyses. Appl. Therm. Eng. 2011, 31, 2636–2644. [Google Scholar] [CrossRef]
- Berndt, D.; Muggli, J.; Wittwer, F.; Langer, C.; Heinrich, S.; Knittel, T.; Schreiner, R. MEMS-based thermal conductivity sensor for hydrogen gas detection in automotive applications. Sens. Actuators A Phys. 2020, 305. [Google Scholar] [CrossRef]
- Alahmadi, A. Design an optimum climate control system for efficient smart universities educational environment. Int. J. Sci. Technol. Res. 2020, 9, 440–449. [Google Scholar]
- Szczurek, A.; Maciejewska, M. Categorisation for air quality assessment in car cabin. Transport. Res. D Transp. Environ. 2016, 48, 161–170. [Google Scholar] [CrossRef]
- Chang, T.-B.; Sheu, J.-J.; Huang, J.-W.; Lin, Y.-S.; Chang, C.-C. Development of a CFD model for simulating vehicle cabin indoor air quality. Transport. Res. D Transp. Environ. 2018, 62, 433–440. [Google Scholar] [CrossRef]
- Moreno, T.; Pacitto, A.; Fernández, A.; Amato, F.; Marco, E.; Grimalt, J.O.; Buonanno, G.; Querol, X. Vehicle interior air quality conditions when travelling by taxi. Environ. Res. 2019, 172, 529–542. [Google Scholar] [CrossRef] [PubMed]
- Qi, C.; Helian, Y.; Liu, J.; Zhang, L. Experiment study on the thermal comfort inside a car passenger compartment. Procedia Eng. 2017, 205, 3607–3614. [Google Scholar] [CrossRef]
- Barnes, N.M.; Ng, T.W.; Ma, K.K.; Lai, K.M. In-cabin air quality during driving and engine idling in air-conditioned private vehicles in Hong Kong. Int. J. Environ. Res. Public Health 2018, 15, 611. [Google Scholar] [CrossRef] [Green Version]
- Lee, E.S.; Stenstrom, M.K.; Zhu, Y. Ultrafine particle infiltration into passenger vehicles. Part II: Model analysis. Transport. Res. D Transp. Environ. 2015, 38, 144–155. [Google Scholar] [CrossRef]
- Gładyszewska-Fiedoruk, K.; Nieciecki, M. Indoor air quality in a multi–car garage. Energy Procedia 2016, 95, 132–139. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.; Long, Z.; Wang, G. Fast heating model for the aircraft cabin air. Energies 2019, 12, 3565. [Google Scholar] [CrossRef] [Green Version]
- Marć, M.; Śmiełowska, M.; Zabiegała, B. Concentrations of monoaromatic hydrocarbons in the air of the underground car park and individual garages attached to residential buildings. Sci. Total Environ. 2016, 573, 767–777. [Google Scholar] [CrossRef]
- Szczepanik-Ścisło, N.; Ścisło, Ł. Air leakage modelling and its influence on the air quality inside a garage. E3S Web Conf. 2018, 44, 00172. [Google Scholar] [CrossRef] [Green Version]
- Piasecki, M.; Kostyrko, K.B. Combined model for IAQ assessment: Part 1—Morphology of the model and selection of substantial air quality impact sub-models. Appl. Sci. 2019, 9, 3918. [Google Scholar] [CrossRef] [Green Version]
- Piasecki, M. Practical implementation of the indoor environmental quality model for the assessment of nearly zero energy single-family building. Buildings 2019, 9, 214. [Google Scholar] [CrossRef] [Green Version]
- Bahramnia, P.; Hosseini Rostami, S.M.; Wang, J.; Kim, G.-J. Modeling and controlling of temperature and humidity in building heating, ventilating, and air conditioning system using model predictive control. Energies 2019, 12, 4805. [Google Scholar] [CrossRef] [Green Version]
- Yu, S.; Cui, Y.; Shao, Y.; Han, F. Simulation research on the effect of coupled heat and moisture transfer on the energy consumption and indoor environment of public buildings. Energies 2019, 12, 141. [Google Scholar] [CrossRef] [Green Version]
- Alahmer, A.; Omar, M.; Mayyas, A.R.; Qattawi, A. Analysis of vehicular cabins’ thermal sensation and comfort state, under relative humidity and temperature control, using Berkeley and Fanger models. Build. Environ. 2012, 48, 146–163. [Google Scholar] [CrossRef]
- Kumar, S.; Cerny, J.; Kic, P. Air-conditioning in the cabins of passenger cars. Agron. Res. 2018, 16, 2088–2096. [Google Scholar] [CrossRef]
- Luangprasert, M.; Vasithamrong, C.; Pongratananukul, S.; Chantranuwathana, S.; Pumrin, S.; De Silva, I.P. In-vehicle carbon dioxide concentration in commuting cars in Bangkok, Thailand. J. Air Waste Manag. Assoc. 2017, 67, 623–633. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruiz, I.; Sprowls, M.; Deng, Y.; Kulick, D.; Destaillats, H.; Forzani, E.S. Assessing metabolic rate and indoor air quality with passive environmental sensors. J. Breath Res. 2018, 12, 036012. [Google Scholar] [CrossRef] [PubMed]
- U.S. EPA. Indoor air quality tools for schools reference guide. In IAQ Tools for Schools Action Kit, EPA 402/K-07/008; United States Environmental Protection Agency (U.S. EPA): Washington, DC, USA, 2009. [Google Scholar]
- Recknagel, H.; Sprenger, E.; Schramek, E.R. Taschenbuch für Heizung + Klimatechnik 07/08: Taschenbuch für Heizung + Klimatechnik; Oldenbourg Industrieverlag: Munich, Germany, 2006. (In German) [Google Scholar]
- Secretariat: BSI, PN-EN 13779:2007. Ventilation for Non-Residential Buildings. Performance Requirements for Ventilation and Room-Conditioning Systems; REHVA: Brussels, Belgium, July 2006. [Google Scholar]
- ASHRAE Standard. Thermal Environmental Conditions for Human Occupancy; ASHRAE Standard 55, Rev. 2012; ANSI Publications: Washington, DC, USA, 2012. [Google Scholar]
- Gasparin, S.; Berger, J.; Dutykh, D.; Mendes, N. An improved explicit scheme for whole-building hygrothermal simulation. Build. Simul. 2018, 11, 465–481. [Google Scholar] [CrossRef] [Green Version]
- Goto, Y.; Wakili, K.G.; Frank, T.; Stahl, T.; Ostermeyer, Y.; Ando, N.; Wallbaum, H. Heat and moisture balance simulation of a building with vapor-open envelope system for subtropical regions. Build. Simul. 2012, 5, 301. [Google Scholar] [CrossRef]
- Nadarajan, M.; Kirubakaran, D.V. Simulation studies on indoor relative humidity maintenance in rural residential buildings using sustainable building materials. IOSR J. Mech. Civ. Eng. 2016, 4, 51–57. [Google Scholar] [CrossRef]
- Tariku, F.; Kumaran, K.; Fazio, P. Determination of indoor humidity profile using a whole-building hygrothermal model. Build. Simul. 2011, 4, 61–78. [Google Scholar] [CrossRef] [Green Version]
- Teleszewski, T.; Gładyszewska Fiedoruk, K. Characteristics of humidity in classrooms with stack ventilation and development of calculation models of humidity based on the experiment. J. Build. Eng. 2020, 31, 101381. [Google Scholar] [CrossRef]
- Horak, J.; Schmerold, I.; Wimmer, K.; Schauberger, G. Cabin air temperature of parked vehicles in summer conditions: Life-threatening environment for children and pets calculated by a dynamic model. Theor. Appl. Climatol. 2017, 130, 107–118. [Google Scholar] [CrossRef] [Green Version]
- Grundstein, A.; Meentemeyer, V.; Dowd, J. Maximum vehicle cabin temperatures under different meteorological conditions. Int. J. Biometeorol. 2009, 53, 255–261. [Google Scholar] [CrossRef] [PubMed]
- Fayazbakhsh, M.; Bahrami, M. Comprehensive modeling of vehicle air conditioning loads using heat balance method. In Proceedings of the SAE 2013 World Congress & Exhibition, Detroit, MI, USA, 16–18 April 2013. [Google Scholar] [CrossRef] [Green Version]
Identification of People in the Car | Gender | Adult/Child | Height | Weight | Body Surface Area (BSA) |
---|---|---|---|---|---|
- | - | - | cm | kg | m2 |
a | female | adult | 160 | 70 | 1.73 |
b | female | adult | 164 | 60 | 1.65 |
c | male | adult | 180 | 88 | 2.08 |
d | male | child | 112 | 18.3 | 0.76 |
e | female | child | 110 | 16.1 | 0.71 |
f | female | adult | 171 | 90 | 2.02 |
g | male | adult | 180 | 90 | 2.10 |
h | female | child | 115 | 19 | 0.78 |
Number of Measurement Series | Car | Room Volume | Number of Persons (Adults and Children under 6 Years Old) m and Identification of People in the Car | Time | Air Change Rate n | Date | |
---|---|---|---|---|---|---|---|
V | Adults | Children | t | ||||
- | - | m3 | person | person | min | h−1 | - |
1 | A | 2.78 | 3 (a,b,c) | 0 | 54 | 26.79 | 3 May 2019 |
2 | A | 2.78 | 2 (a,c) | 2 (d,e) | 44 | 27.14 | 5 May 2019 |
3 | A | 2.78 | 2 (b,c) | 0 | 44 | 5.33 | 18 May 2019 |
4 | A | 2.78 | 2 (b,c) | 0 | 70 | 4.17 | 18 May 2019 |
5 | A | 2.78 | 2 (b,c) | 0 | 69 | 4.66 | 21 May 2019 |
6 | A | 2.78 | 2 (b,c) | 0 | 74 | 29.65 | 21 May 2019 |
7 | A | 2.78 | 3 (a,b,c) | 2 (d,e) | 70 | 32.08 | 26 May 2019 |
8 | A | 2.78 | 2 (a,b) | 2 (d,e) | 88 | 83.01 | 2 June 2019 |
9 | B | 2.5 | 2 (a,b) | 0 | 56 | 64.04 | 9 June 2019 |
10 | A | 2.78 | 1 (c) | 0 | 68 | 6.21 | 18 June 2019 |
11 | B | 2.5 | 2 (f,g) | 0 | 22 | 64.05 | 15 June 2019 |
12 | A | 2.78 | 2 (a,c) | 2 (d,e) | 95 | 56.44 | 27 July 2019 |
13 | B | 2.5 | 2 (f,g) | 1 (h) | 32 | 64.10 | 1 August 2019 |
14 | B | 2.5 | 2 (f,g) | 0 | 23 | 64.01 | 2 August 2019 |
15 | B | 2.5 | 2 (f,g) | 0 | 54 | 64.03 | 9 September 2019 |
Number of Measurement Series | Outdoor Average Temperature | Average Temperature in the Supply Duct | Average Relative Humidity in the Supply Duct | Average Absolute Humidity in the Supply Duct | Indoor Average Temperature | Indoor Average Relative Humidity | Initial Absolute Humidity | Indoor Average Absolute Humidity | Air Quality Based on Thermohumid Conditions [13,34] |
---|---|---|---|---|---|---|---|---|---|
ϕa | ωa | ϕc_avg | ωt = 0 | ωc_avg | - | ||||
- | °C | °C | % | g/m3 | °C | % | g/m3 | g/m3 | - |
1 | 10.6 | 16.1 | 50.9 | 7.0 | 20.0 | 48.3 | 8.9 | 8.3 | intermediate 1 |
2 | 10.1 | 15.5 | 35.4 | 4.7 | 21.8 | 30.1 | 6.3 | 5.8 | intermediate1 |
3 | 17.7 | 28.0 | 50.7 | 13.8 | 28.0 | 67.6 | 15.5 | 18.4 | bad 1 |
4 | 24.5 | 33.2 | 39.0 | 14.1 | 32.2 | 62.0 | 16.8 | 21.2 | bad 1 |
5 | 18.9 | 30.9 | 37.6 | 12.0 | 29.0 | 60.7 | 14.1 | 17.5 | bad 1 |
6 | 25.0 | 31.1 | 36.3 | 11.7 | 35.2 | 34.3 | 14.3 | 13.7 | intermediate 1 |
7 | 16.2 | 21.1 | 38.1 | 7.0 | 25.6 | 36.5 | 12.0 | 8.7 | good 1 |
8 | 27.5 | 31.8 | 34.3 | 11.5 | 34.0 | 33.0 | 14.0 | 12.4 | intermediate 1 |
9 | 28.3 | 30.1 | 26.5 | 8.1 | 42.9 | 18.6 | 8.1 | 10.9 | bad1/very bad 2 |
10 | 31.2 | 41.6 | 18.8 | 10.4 | 39.0 | 35.0 | 12.4 | 17.1 | intermediate1/very bad 2 |
11 | 39.1 | 39.9 | 30.3 | 15.5 | 42.0 | 31.8 | 20.3 | 18.0 | intermediate1/very bad 2 |
12 | 20.6 | 25.2 | 56.8 | 13.3 | 27.5 | 53.8 | 13.7 | 14.2 | bad 1 |
13 | 20.6 | 21.4 | 55.7 | 10.4 | 28.5 | 39.0 | 10.7 | 10.9 | intermediate 1 |
14 | 20.5 | 22.1 | 52.8 | 10.3 | 26.2 | 44.0 | 11.8 | 10.8 | good 1 |
15 | 28.3 | 30.2 | 29.3 | 9.0 | 34.7 | 25.2 | 7.9 | 9.8 | bad 1 |
Coefficients of the Equation (9) | a | b | c | d | E | f | g |
---|---|---|---|---|---|---|---|
Adults, qga | −24.65 | 17.162 | −3.7743 | 0.267452 | −0.48317 | 0.077149 | −0.0040554 |
Children (children at the age of six), qgc | 2.75 | −0.09 | 0 | 0 | −0.1518 | 0 | 0 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gładyszewska-Fiedoruk, K.; Teleszewski, T.J. Modeling of Humidity in Passenger Cars Equipped with Mechanical Ventilation. Energies 2020, 13, 2987. https://doi.org/10.3390/en13112987
Gładyszewska-Fiedoruk K, Teleszewski TJ. Modeling of Humidity in Passenger Cars Equipped with Mechanical Ventilation. Energies. 2020; 13(11):2987. https://doi.org/10.3390/en13112987
Chicago/Turabian StyleGładyszewska-Fiedoruk, Katarzyna, and Tomasz Janusz Teleszewski. 2020. "Modeling of Humidity in Passenger Cars Equipped with Mechanical Ventilation" Energies 13, no. 11: 2987. https://doi.org/10.3390/en13112987
APA StyleGładyszewska-Fiedoruk, K., & Teleszewski, T. J. (2020). Modeling of Humidity in Passenger Cars Equipped with Mechanical Ventilation. Energies, 13(11), 2987. https://doi.org/10.3390/en13112987