Wake Statistics of Different-Scale Wind Turbines under Turbulent Boundary Layer Inflow
Abstract
:1. Introduction
2. Numerical Method
3. Test Cases and Computational Details
3.1. Specifics of the Employed Turbine Design
3.2. Case Setup
4. Results
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Veers, P.; Dykes, K.; Lantz, E.; Barth, S.; Bottasso, C.L.; Carlson, O.; Clifton, A.; Green, J.; Green, P.; Holttinen, H.; et al. Grand challenges in the science of wind energy. Science 2019, 366, eaau2027. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chamorro, L.P.; Porté-Agel, F. A wind-tunnel investigation of wind-turbine wakes: Boundary-layer turbulence effects. Bound. Layer Meteorol. 2009, 132, 129–149. [Google Scholar] [CrossRef] [Green Version]
- Chamorro, L.P.; Porte-Agel, F. Turbulent flow inside and above a wind farm: A wind-tunnel study. Energies 2011, 4, 1916–1936. [Google Scholar] [CrossRef]
- Shen, W.Z.; Zhu, W.J.; Sørensen, J.N. Actuator line/Navier—Stokes computations for the MEXICO rotor: Comparison with detailed measurements. Wind Energy 2012, 15, 811–825. [Google Scholar] [CrossRef]
- Krogstad, P.Å.; Eriksen, P.E. “Blind test” calculations of the performance and wake development for a model wind turbine. Renew. Energy 2013, 50, 325–333. [Google Scholar] [CrossRef]
- Howard, K.B.; Singh, A.; Sotiropoulos, F.; Guala, M. On the statistics of wind turbine wake meandering: An experimental investigation. Phys. Fluids 2015, 27, 075103. [Google Scholar] [CrossRef]
- Lignarolo, L.; Ragni, D.; Scarano, F.; Ferreira, C.S.; Van Bussel, G. Tip-vortex instability and turbulent mixing in wind-turbine wakes. J. Fluid Mech. 2015, 781, 467–493. [Google Scholar] [CrossRef]
- Jin, Y.; Liu, H.; Aggarwal, R.; Singh, A.; Chamorro, L.P. Effects of freestream turbulence in a model wind turbine wake. Energies 2016, 9, 830. [Google Scholar] [CrossRef] [Green Version]
- Barone, M.; White, J. DOE/SNL-TTU Scaled Wind Farm Technology Facility: Research Opportunities for Study of Turbine-Turbine Interaction; SANDIA Report SAND2011-6522; Sandia National Laboratories: Albuquerque, NM, USA, 2011.
- Berg, J.; Bryant, J.; LeBlanc, B.; Maniaci, D.C.; Naughton, B.; Paquette, J.A.; Resor, B.R.; White, J.; Kroeker, D. Scaled wind farm technology facility overview. In Proceedings of the 32nd ASME Wind Energy Symposium, National Harbor, MD, USA, 13–17 January 2014; p. 1088. [Google Scholar]
- Yang, X.; Boomsma, A.; Barone, M.; Sotiropoulos, F. Wind turbine wake interactions at field scale: An LES study of the SWiFT facility. In Journal of Physics: Conference Series; IOP Publishing: Bristol, UK, 2014; Volume 524, p. 012139. [Google Scholar]
- Yang, X.; Boomsma, A.; Sotiropoulos, F.; Resor, B.R.; Maniaci, D.C.; Kelley, C.L. Effects of spanwise blade load distribution on wind turbine wake evolution. In Proceedings of the 33rd Wind Energy Symposium, Kissimmee, FL, USA, 5–9 January 2015; p. 0492. [Google Scholar]
- Hong, J.; Toloui, M.; Chamorro, L.P.; Guala, M.; Howard, K.; Riley, S.; Tucker, J.; Sotiropoulos, F. Natural snowfall reveals large-scale flow structures in the wake of a 2.5-MW wind turbine. Nat. Commun. 2014, 5, 4216. [Google Scholar] [CrossRef]
- Howard, K.B.; Guala, M. Upwind preview to a horizontal axis wind turbine: A wind tunnel and field-scale study. Wind Energy 2016, 19, 1371–1389. [Google Scholar] [CrossRef]
- Heisel, M.; Hong, J.; Guala, M. The spectral signature of wind turbine wake meandering: A wind tunnel and field-scale study. Wind Energy 2018, 21, 715–731. [Google Scholar] [CrossRef]
- Kelley, C.L.; Maniaci, D.C.; Resor, B.R. Scaled aerodynamic wind turbine design for wake similarity. In Proceedings of the 34th Wind Energy Symposium, San Diego, CA, USA, 4–8 January 2016; p. 1521. [Google Scholar]
- Wu, Y.T.; Porté-Agel, F. Atmospheric turbulence effects on wind-turbine wakes: An LES study. Energies 2012, 5, 5340–5362. [Google Scholar] [CrossRef]
- Chamorro, L.P.; Porté-Agel, F. Effects of thermal stability and incoming boundary-layer flow characteristics on wind-turbine wakes: A wind-tunnel study. Bound. Layer Meteorol. 2010, 136, 515–533. [Google Scholar] [CrossRef] [Green Version]
- Abkar, M.; Porté-Agel, F. Influence of atmospheric stability on wind-turbine wakes: A large-eddy simulation study. Phys. Fluids 2015, 27, 035104. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Howard, K.B.; Guala, M.; Sotiropoulos, F. Effects of a three-dimensional hill on the wake characteristics of a model wind turbine. Phys. Fluids 2015, 27, 025103. [Google Scholar] [CrossRef]
- Yang, X.; Hong, J.; Barone, M.; Sotiropoulos, F. Coherent dynamics in the rotor tip shear layer of utility-scale wind turbines. J. Fluid Mech. 2016, 804, 90–115. [Google Scholar] [CrossRef] [Green Version]
- Foti, D.; Yang, X.; Sotiropoulos, F. Similarity of wake meandering for different wind turbine designs for different scales. J. Fluid Mech. 2018, 842, 5–25. [Google Scholar] [CrossRef]
- Calderer, A.; Yang, X.; Angelidis, D.; Khosronejad, A.; Le, T.; Kang, S.; Gilmanov, A.; Ge, L.; Borazjani, I. Virtual Flow Simulator; Technical Report; University of Minnesota: Minneapolis, MN, USA, 2015. [Google Scholar]
- Yang, X.; Sotiropoulos, F.; Conzemius, R.J.; Wachtler, J.N.; Strong, M.B. Large-eddy simulation of turbulent flow past wind turbines/farms: The Virtual Wind Simulator (VWiS). Wind Energy 2015, 18, 2025–2045. [Google Scholar] [CrossRef]
- Yang, X.; Sotiropoulos, F. A new class of actuator surface models for wind turbines. Wind Energy 2018, 21, 285–302. [Google Scholar] [CrossRef] [Green Version]
- Germano, M.; Piomelli, U.; Moin, P.; Cabot, W.H. A dynamic subgrid-scale eddy viscosity model. Phys. Fluids A Fluid Dyn. 1991, 3, 1760–1765. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Sotiropoulos, F. Wake characteristics of a utility-scale wind turbine under coherent inflow structures and different operating conditions. Phys. Rev. Fluids 2019, 4, 024604. [Google Scholar] [CrossRef]
- Foti, D.; Yang, X.; Shen, L.; Sotiropoulos, F. Effect of wind turbine nacelle on turbine wake dynamics in large wind farms. J. Fluid Mech. 2019, 869, 1–26. [Google Scholar] [CrossRef]
- Yang, X.; Sotiropoulos, F. A Review on the Meandering of Wind Turbine Wakes. Energies 2019, 12, 4725. [Google Scholar] [CrossRef] [Green Version]
- Kelley, C.L.; Maniaci, D.C.; Resor, B.R. Horizontal-axis wind turbine wake sensitivity to different blade load distributions. In Proceedings of the 33rd Wind Energy Symposium, Kissimmee, FL, USA, 5–9 January 2015; p. 0490. [Google Scholar]
- Kelley, C.L.; White, J. An Update to the SWiFT V27 Reference Model; Technical Report SAND2018-11893; Sandia National Laboratories (SNL-NM): Albuquerque, NM, USA, 2018.
- Kang, S.; Yang, X.; Sotiropoulos, F. On the onset of wake meandering for an axial flow turbine in a turbulent open channel flow. J. Fluid Mech. 2014, 744, 376–403. [Google Scholar] [CrossRef]
- Blondel, F.; Cathelain, M. An alternative form of the super-Gaussian wind turbine wake model. Wind. Energy Sci. Discuss. 2020, 2020, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Doubrawa, P.; Debnath, M.; Moriarty, P.J.; Branlard, E.; Herges, T.G.; Maniaci, D.C.; Naughton, B. Benchmarks for Model Validation based on LiDAR Wake Measurements. J. Phys. Conf. Ser. 2019, 1256, 012024. [Google Scholar] [CrossRef]
- He, G.; Jin, G.; Yang, Y. Space-time correlations and dynamic coupling in turbulent flows. Annu. Rev. Fluid Mech. 2017, 49, 51–70. [Google Scholar] [CrossRef] [Green Version]
Section | r/R | Shape |
---|---|---|
1 | Circle (Circle) | |
2 | DU 40 (NACA 63-235) | |
3 | DU 35 (NACA 63-224) | |
4 | DU 30 (NACA 63-218) | |
5 | DU 25 (NACA 63-214) | |
6 | NACA | |
7 | NACA |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, X.; Foti, D.; Kelley, C.; Maniaci, D.; Sotiropoulos, F. Wake Statistics of Different-Scale Wind Turbines under Turbulent Boundary Layer Inflow. Energies 2020, 13, 3004. https://doi.org/10.3390/en13113004
Yang X, Foti D, Kelley C, Maniaci D, Sotiropoulos F. Wake Statistics of Different-Scale Wind Turbines under Turbulent Boundary Layer Inflow. Energies. 2020; 13(11):3004. https://doi.org/10.3390/en13113004
Chicago/Turabian StyleYang, Xiaolei, Daniel Foti, Christopher Kelley, David Maniaci, and Fotis Sotiropoulos. 2020. "Wake Statistics of Different-Scale Wind Turbines under Turbulent Boundary Layer Inflow" Energies 13, no. 11: 3004. https://doi.org/10.3390/en13113004
APA StyleYang, X., Foti, D., Kelley, C., Maniaci, D., & Sotiropoulos, F. (2020). Wake Statistics of Different-Scale Wind Turbines under Turbulent Boundary Layer Inflow. Energies, 13(11), 3004. https://doi.org/10.3390/en13113004