On the Potential of Silicon Intermediate Band Solar Cells
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. One-Sun Case
3.2. Concentration Case
3.3. Auger Recombination
4. Conclusions
Disclaimer
Author Contributions
Funding
Conflicts of Interest
References
- Luque, A.; Martí, A. Increasing the Efficiency of Ideal Solar Cells by Photon Induced Transitions at Intermediate Levels. Phys. Rev. Lett. 1997, 78, 5014–5017. [Google Scholar] [CrossRef]
- Luque, A.; Martí, A. The Intermediate Band Solar Cell: Progress toward the Realization of an Attractive Concept. Adv. Mater. 2010, 22, 160–174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoshida, M.; Ekins-Daukes, N.; Farrell, D.J.; Phillips, C.C. Photon ratchet intermediate band solar cells. Appl. Phys. Lett. 2012, 100, 263902. [Google Scholar] [CrossRef] [Green Version]
- Mott, N.F. Metal-Insulator Transition. Rev. Mod. Phys. 1968, 40, 677–683. [Google Scholar] [CrossRef]
- Luque, A.; Martí, A.; Antolin, E.; Tablero, C. Intermediate bands versus levels in non-radiative recombination. Phys. B Condens. Matter 2006, 382, 320–327. [Google Scholar] [CrossRef]
- Tablero, C.; Crespo, C.T. Effects of the impurity–impurity and impurity–host interactions on the charge density and the related processes. Phys. B Condens. Matter 2009, 404, 4023–4028. [Google Scholar] [CrossRef]
- Crespo, C.T. Effects of the impurity-host interactions on the nonradiative processes in ZnS:Cr. J. Appl. Phys. 2010, 108, 93114. [Google Scholar] [CrossRef] [Green Version]
- Krich, J.J.; Halperin, B.I.; Aspuru-Guzik, A. Nonradiative lifetimes in intermediate band photovoltaics—Absence of lifetime recovery. J. Appl. Phys. 2012, 112, 13707. [Google Scholar] [CrossRef] [Green Version]
- Olea, J.; Pastor, D.P.; Toledano-Luque, M.; Andres, E.S.; Mártil, I.; González-Díaz, G. High Quality Ti-Implanted Si Layers Above Solid Solubility Limit. In Proceedings of the 2009 Spanish Conference on Electron Devices, Santiago de Compostela, Spain, 11–13 February 2009; pp. 38–41. [Google Scholar]
- Olea, J.; Pastor, D.P.; Del Prado, Á; García-Hemme, E.; García-Hernansanz, R.; Mártil, I.; González-Díaz, G. Ruling out the impact of defects on the below band gap photoconductivity of Ti supersaturated Si. J. Appl. Phys. 2013, 114, 53110. [Google Scholar] [CrossRef] [Green Version]
- García-Hemme, E.; García-Hernansanz, R.; Olea, J.; Pastor, D.P.; Del Prado, Á.; Mártil, I.; González-Díaz, G. Sub-bandgap spectral photo-response analysis of Ti supersaturated Si. Appl. Phys. Lett. 2012, 101, 192101. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Liu, F.; Song, X. The insulator-to-metal transition of Co hyperdoped crystalline silicon. J. Appl. Phys. 2013, 113, 103702. [Google Scholar] [CrossRef]
- Ertekin, E.; Winkler, M.T.; Recht, D.; Said, A.J.; Aziz, M.J.; Buonassisi, T.; Grossman, J.C. Insulator-to-Metal Transition in Selenium-Hyperdoped Silicon: Observation and Origin. Phys. Rev. Lett. 2012, 108, 026401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Said, A.J.; Recht, D.; Sullivan, J.T.; Warrender, J.; Buonassisi, T.; Persans, P.D.; Aziz, M.J. Extended infrared photoresponse and gain in chalcogen-supersaturated silicon photodiodes. Appl. Phys. Lett. 2011, 99, 73503. [Google Scholar] [CrossRef]
- Sullivan, J.T.; Simmons, C.B.; Krich, J.J.; Akey, A.J.; Recht, D.; Aziz, M.J.; Buonassisi, T. Methodology for vetting heavily doped semiconductors for intermediate band photovoltaics: A case study in sulfur-hyperdoped silicon. J. Appl. Phys. 2013, 114, 103701. [Google Scholar] [CrossRef] [Green Version]
- Persans, P.D.; Berry, N.E.; Recht, D.; Hutchinson, D.; Peterson, H.; Clark, J.; Charnvanichborikarn, S.; Williams, J.; DiFranzo, A.; Aziz, M.J.; et al. Photocarrier lifetime and transport in silicon supersaturated with sulfur. Appl. Phys. Lett. 2012, 101, 111105. [Google Scholar] [CrossRef] [Green Version]
- Winkler, M.T.; Recht, D.; Sher, M.-J.; Said, A.J.; Mazur, E.; Aziz, M.J. Insulator-to-Metal Transition in Sulfur-Doped Silicon. Phys. Rev. Lett. 2011, 106, 178701. [Google Scholar] [CrossRef] [PubMed]
- Antolín, E.; Martí, A.; Olea, J.; Pastor, D.P.; González-Díaz, G.; Mártil, I.; Luque, A. Lifetime recovery in ultrahighly titanium-doped silicon for the implementation of an intermediate band material. Appl. Phys. Lett. 2009, 94, 42115. [Google Scholar] [CrossRef] [Green Version]
- González-Díaz, G.; Olea, J.; Mártil, I.; Pastor, D.P.; Martí, A.; Antolín, E.; Luque, A. Intermediate band mobility in heavily titanium-doped silicon layers. Sol. Energy Mater. Sol. Cells 2009, 93, 1668–1673. [Google Scholar] [CrossRef]
- Krishna, A.; Krich, J.J. Increasing efficiency in intermediate band solar cells with overlapping absorptions. J. Opt. 2016, 18, 74010. [Google Scholar] [CrossRef] [Green Version]
- Cuadra, L.; Martí, A.; Luque, A. Influence of the Overlap between the Absorption Coefficients on the Efficiency of the Intermediate Band Solar Cell. IEEE Trans. Electron Devices 2004, 51, 1002–1007. [Google Scholar] [CrossRef]
- Yablonovitch, E.; Cody, G. Intensity enhancement in textured optical sheets for solar cells. IEEE Trans. Electron Devices 1982, 29, 300–305. [Google Scholar] [CrossRef]
- Campbell, P.; Green, M.A. The limiting efficiency of silicon solar cells under concentrated sunlight. IEEE Trans. Electron Devices 1986, 33, 234–239. [Google Scholar] [CrossRef]
- Martí, A.; Araújo, G.L. Limiting efficiencies for photovoltaic energy conversion in multigap systems. Sol. Energy Mater. Sol. Cells 1996, 43, 203–222. [Google Scholar] [CrossRef]
- Araujo, G.; Martí, A. Limiting efficiencies of GaAs solar cells. IEEE Trans. Electron Devices 1990, 37, 1402–1405. [Google Scholar] [CrossRef] [Green Version]
- Pusch, A.; Ekins-Daukes, N.J. Voltage Matching, Étendue, and Ratchet Steps in Advanced-Concept Solar Cells. Phys. Rev. Appl. 2019, 12, 044055. [Google Scholar] [CrossRef] [Green Version]
Si Solar Cell | Si Solar Cell | Si-IBSC | Si-IBSC | |
---|---|---|---|---|
Maximum efficiency | Auger losses | Maximum efficiency | Auger losses | |
1 sun | 30.4% | 4 points | 30.3% (γ = 0 EL/EG = 0.29) | --- |
100 suns | 34.8% | 4 points | 41.8% (γ = 0 EL/EG = 0.3) | --- |
suns | 40.7% | 4 points | 54.6% (γ = 0 EL/EG = 0.32) | 5 points (EL/EG = 0.3) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
López, E.; Martí, A.; Antolín, E.; Luque, A. On the Potential of Silicon Intermediate Band Solar Cells. Energies 2020, 13, 3044. https://doi.org/10.3390/en13123044
López E, Martí A, Antolín E, Luque A. On the Potential of Silicon Intermediate Band Solar Cells. Energies. 2020; 13(12):3044. https://doi.org/10.3390/en13123044
Chicago/Turabian StyleLópez, Esther, Antonio Martí, Elisa Antolín, and Antonio Luque. 2020. "On the Potential of Silicon Intermediate Band Solar Cells" Energies 13, no. 12: 3044. https://doi.org/10.3390/en13123044
APA StyleLópez, E., Martí, A., Antolín, E., & Luque, A. (2020). On the Potential of Silicon Intermediate Band Solar Cells. Energies, 13(12), 3044. https://doi.org/10.3390/en13123044