The Impact of Additives on the Main Properties of Phase Change Materials
Abstract
:1. Introduction
- improving thermal properties, especially the thermal conductivity of a material,
- increasing the heat transfer surface area,
- improving the heat transfer process,
- combined (hybrid) techniques.
2. Nanomaterials
3. Materials at Micro- and Macro Scales
4. Encapsulation
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Nomenclature
A | surface area, m2 |
k | thermal conductivity, W/(m∙K) |
n | thermal conductivity improvement, - |
heat transfer rate, W | |
t | time, h |
timp | melting (solidification) time improvement, % |
U | heat transfer coefficient, W/m2 |
ΔT | temperature difference, °C, K |
Abbreviations
a-CNT | aligned carbon nanotubes |
CBNP | carbon black nano-powder |
CNF | carbon nanofibers |
CPCM | composite phase change material |
DHPD | disodium hydrogen phosphate dodecahydrate (Na2HPO4∙12H2O) |
EG | expanded graphite |
EP | expanded perlite |
GNP | graphene nanoplatelets |
HDPE | high-density polyethylene |
HTF | heat transfer fluid |
LHTES | latent heat thermal energy storage |
MEG | modified expanded graphite |
MF | melamine-formaldehyde |
Mtoe | million tons of oil equivalent |
MWCNT | multi-walled carbon nanotubes |
NEPCM | nano-enhanced phase change material |
NG | nano-graphite |
OBC | olefin block copolymer |
PCM | phase change material |
PHEMA | poly (hydroxyethyl methacrylate) |
PMF | poly(melamine-formaldehyde) |
PS | polystyrene |
PPI | pores per inch |
r-CNT | disordered carbon nanotubes |
RES | renewable energy sources |
SAT | sodium acetate trihydrate (CH3COONa∙3H2O) |
STES | sensible thermal energy storage |
TCE | thermal conductivity enhancer |
TES | thermal energy storage |
TPES | total primary energy supply |
Subscripts
CPCM | composite phase change material |
eff | effective |
PCM | phase change material |
References
- International Energy Agency. World Energy Balances: An Overview; International Energy Agency: Paris, France, 2019. [Google Scholar]
- Koohi-Fayegh, S.; Rosen, M.A. A review of energy storage types, applications and recent developments. J. Energy Storage 2020, 27. [Google Scholar] [CrossRef]
- Tatsidjodoung, P.; Le Pierrès, N.; Luo, L. A review of potential materials for thermal energy storage in building applications. Renew. Sustain. Energy Rev. 2013, 18, 327–349. [Google Scholar] [CrossRef]
- Nazir, H.; Batool, M.; Bolivar Osorio, F.J.; Isaza-Ruiz, M.; Xu, X.; Vignarooban, K.; Phelan, P.; Inamuddin; Kannan, A.M. Recent developments in phase change materials for energy storage applications: A review. Int. J. Heat Mass Transf. 2019, 129, 491–523. [Google Scholar] [CrossRef]
- Yan, T.; Wang, R.Z.; Li, T.X.; Wang, L.W.; Fred, I.T. A review of promising candidate reactions for chemical heat storage. Renew. Sustain. Energy Rev. 2015, 43, 13–31. [Google Scholar] [CrossRef]
- Scapino, L.; Zondag, H.A.; Van Bael, J.; Diriken, J.; Rindt, C.C.M. Sorption heat storage for long-term low-temperature applications: A review on the advancements at material and prototype scale. Appl. Energy 2017, 190, 920–948. [Google Scholar] [CrossRef]
- Lizana, J.; Chacartegui, R.; Barrios-Padura, A.; Valverde, J.M. Advances in thermal energy storage materials and their applications towards zero energy buildings: A critical review. Appl. Energy 2017, 203, 219–239. [Google Scholar] [CrossRef]
- Alva, G.; Lin, Y.; Fang, G. An overview of thermal energy storage systems. Energy 2018, 144, 341–378. [Google Scholar] [CrossRef]
- Lott, M.C.; Kim, S.I.; Tam, C.; Houssin, D.; Gagné, J.F. Technology Roadmap: Energy Storage; International Energy Agency (IEA): Paris, France, 2014. [Google Scholar]
- Sharma, A.; Tyagi, V.V.; Chen, C.R.; Buddhi, D. Review on thermal energy storage with phase change materials and applications. Renew. Sustain. Energy Rev. 2009, 13, 318–345. [Google Scholar] [CrossRef]
- Elias, C.N.; Stathopoulos, V.N. A comprehensive review of recent advances in materials aspects of phase change materials in thermal energy storage. Energy Procedia 2019, 161, 385–394. [Google Scholar] [CrossRef]
- Zalba, B.; Marín, J.M.; Cabeza, L.F.; Mehling, H. Review on thermal energy storage with phase change: Materials, heat transfer analysis and applications. Appl. Therm. Eng. 2003, 23, 251–283. [Google Scholar] [CrossRef]
- Fallahi, A.; Guldentops, G.; Tao, M.; Granados-Focil, S.; Van Dessel, S. Review on solid–solid phase change materials for thermal energy storage: Molecular structure and thermal properties. Appl. Therm. Eng. 2017, 127, 1427–1441. [Google Scholar] [CrossRef]
- Abhat, A. Low temperature latent heat thermal energy storage: Heat storage materials. Sol. Energy 1983, 30, 313–332. [Google Scholar] [CrossRef]
- Mohamed, S.A.; Al-Sulaiman, F.A.; Ibrahim, N.I.; Zahir, M.H.; Al-Ahmed, A.; Saidur, R.; Yılbaş, B.S.; Sahin, A.Z. A review on current status and challenges of inorganic phase change materials for thermal energy storage systems. Renew. Sustain. Energy Rev. 2017, 70, 1072–1089. [Google Scholar] [CrossRef]
- Mathis, D.; Blanchet, P.; Lagière, P.; Landry, V. Performance of Wood-Based Panels Integrated with a Bio-Based Phase Change Material: A Full-Scale Experiment in a Cold Climate with Timber-Frame Huts. Energies 2018, 11, 3093. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Wang, J.; Ding, Y.; Yao, H.; Huang, Y. Dynamic thermal management for industrial waste heat recovery based on phase change material thermal storage. Appl. Energy 2019, 236, 1168–1182. [Google Scholar] [CrossRef]
- Abdelsalam, M.Y.; Teamah, H.M.; Lightstone, M.F.; Cotton, J.S. Hybrid thermal energy storage with phase change materials for solar domestic hot water applications: Direct versus indirect heat exchange systems. Renew. Energy 2020, 147, 77–88. [Google Scholar] [CrossRef]
- Siahkamari, L.; Rahimi, M.; Azimi, N.; Banibayat, M. Experimental investigation on using a novel phase change material (PCM) in micro structure photovoltaic cooling system. Int. Commun. Heat Mass Transf. 2019, 100, 60–66. [Google Scholar] [CrossRef]
- Guerraiche, D.; Bougriou, C.; Guerraiche, K.; Valenzuela, L.; Driss, Z. Experimental and numerical study of a solar collector using phase change material as heat storage. J. Energy Storage 2020, 27, 101133. [Google Scholar] [CrossRef]
- Mofijur, M.; Mahlia, T.M.I.; Silitonga, A.S.; Ong, H.C.; Silakhori, M.; Hasan, M.H.; Putra, N.; Ashrafur Rahman, S.M. Phase Change Materials (PCM) for Solar Energy Usages and Storage: An Overview. Energies 2019, 12, 3167. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Z.Y.; Qu, Z.G. Lithium–ion battery thermal management using heat pipe and phase change material during discharge–charge cycle: A comprehensive numerical study. Appl. Energy 2019, 242, 378–392. [Google Scholar] [CrossRef]
- Ganatra, Y.; Ruiz, J.; Howarter, J.A.; Marconnet, A. Experimental investigation of Phase Change Materials for thermal management of handheld devices. Int. J. Therm. Sci. 2018, 129, 358–364. [Google Scholar] [CrossRef]
- Iqbal, K.; Sun, D. Development of thermo-regulating polypropylene fibre containing microencapsulated phase change materials. Renew. Energy 2014, 71, 473–479. [Google Scholar] [CrossRef]
- Said, M.A.; Hassan, H. Parametric study on the effect of using cold thermal storage energy of phase change material on the performance of air-conditioning unit. Appl. Energy 2018, 230, 1380–1402. [Google Scholar] [CrossRef]
- Alehosseini, E.; Jafari, S.M. Micro/nano-encapsulated phase change materials (PCMs) as emerging materials for the food industry. Trends Food Sci. Technol. 2019, 91, 116–128. [Google Scholar] [CrossRef]
- Lv, Y.; Zou, Y.; Yang, L. Feasibility study for thermal protection by microencapsulated phase change micro/nanoparticles during cryosurgery. Chem. Eng. Sci. 2011, 66, 3941–3953. [Google Scholar] [CrossRef]
- Magendran, S.S.; Khan, F.S.A.; Mubarak, N.M.; Vaka, M.; Walvekar, R.; Khalid, M.; Abdullah, E.C.; Nizamuddin, S.; Karri, R.R. Synthesis of organic phase change materials (PCM) for energy storage applications: A review. Nano-Struct. Nano-Objects 2019, 20. [Google Scholar] [CrossRef]
- Pielichowska, K.; Pielichowski, K. Phase change materials for thermal energy storage. Prog. Mater. Sci. 2014, 65, 67–123. [Google Scholar] [CrossRef]
- Du, K.; Calautit, J.; Wang, Z.; Wu, Y.; Liu, H. A review of the applications of phase change materials in cooling, heating and power generation in different temperature ranges. Appl. Energy 2018, 220, 242–273. [Google Scholar] [CrossRef]
- Li, S.F.; Liu, Z.H.; Wang, X.J. A comprehensive review on positive cold energy storage technologies and applications in air conditioning with phase change materials. Appl. Energy 2019, 255. [Google Scholar] [CrossRef]
- Fernández, A.I.; Barreneche, C.; Belusko, M.; Segarra, M.; Bruno, F.; Cabeza, L.F. Considerations for the use of metal alloys as phase change materials for high temperature applications. Sol. Energy Mater. Sol. Cells 2017, 171, 275–281. [Google Scholar] [CrossRef] [Green Version]
- Kadivar, M.R.; Moghimi, M.A.; Sapin, P.; Markides, C.N. Annulus eccentricity optimisation of a phase-change material (PCM) horizontal double-pipe thermal energy store. J. Energy Storage 2019, 26. [Google Scholar] [CrossRef]
- Wu, S.; Yan, T.; Kuai, Z.; Pan, W. Thermal conductivity enhancement on phase change materials for thermal energy storage: A review. Energy Storage Mater. 2020, 25, 251–295. [Google Scholar] [CrossRef]
- Liu, L.; Su, D.; Tang, Y.; Fang, G. Thermal conductivity enhancement of phase change materials for thermal energy storage: A review. Renew. Sustain. Energy Rev. 2016, 62, 305–317. [Google Scholar] [CrossRef]
- Rehman, T.; Ali, H.M.; Janjua, M.M.; Sajjad, U.; Yan, W.M. A critical review on heat transfer augmentation of phase change materials embedded with porous materials/foams. Int. J. Heat Mass Transf. 2019, 135, 649–673. [Google Scholar] [CrossRef]
- Qureshi, Z.A.; Ali, H.M.; Khushnood, S. Recent advances on thermal conductivity enhancement of phase change materials for energy storage system: A review. Int. J. Heat Mass Transf. 2018, 127, 838–856. [Google Scholar] [CrossRef]
- Lin, Y.; Jia, Y.; Alva, G.; Fang, G. Review on thermal conductivity enhancement, thermal properties and applications of phase change materials in thermal energy storage. Renew. Sustain. Energy Rev. 2018, 82, 2730–2742. [Google Scholar] [CrossRef]
- Eanest Jebasingh, B.; Valan Arasu, A. A comprehensive review on latent heat and thermal conductivity of nanoparticle dispersed phase change material for low-temperature applications. Energy Storage Mater. 2020, 24, 52–74. [Google Scholar] [CrossRef]
- Leong, K.Y.; Abdul Rahman, M.R.; Gurunathan, B.A. Nano-enhanced phase change materials: A review of thermo-physical properties, applications and challenges. J. Energy Storage 2019, 21, 18–31. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, X.; Ji, J.; Li, Y.; Munyalo, J.M.; Liu, B.; Xu, X.; Liu, S. Thermal conductivity modification of n-octanoic acid-myristic acid composite phase change material. J. Mol. Liq. 2019, 288. [Google Scholar] [CrossRef]
- Lin, S.C.; Al-Kayiem, H.H. Evaluation of copper nanoparticles—Paraffin wax compositions for solar thermal energy storage. Sol. Energy 2016, 132, 267–278. [Google Scholar] [CrossRef]
- Sami, S.; Etesami, N. Improving thermal characteristics and stability of phase change material containing TiO2 nanoparticles after thermal cycles for energy storage. Appl. Therm. Eng. 2017, 124, 346–352. [Google Scholar] [CrossRef]
- Soni, V.; Kumar, A.; Jain, V.K. Performance evaluation of nano-enhanced phase change materials during discharge stage in waste heat recovery. Renew. Energy 2018, 127, 587–601. [Google Scholar] [CrossRef]
- Martín, M.; Villalba, A.; Inés Fernández, A.; Barreneche, C. Development of new nano-enhanced phase change materials (NEPCM) to improve energy efficiency in buildings: Lab-scale characterization. Energy Build. 2019, 192, 75–83. [Google Scholar] [CrossRef]
- Masoumi, H.; Haghighi khoshkhoo, R.; Mirfendereski, S.M. Modification of physical and thermal characteristics of stearic acid as a phase change materials using TiO2-nanoparticles. Thermochim. Acta 2019, 675, 9–17. [Google Scholar] [CrossRef]
- Ali, M.A.; Viegas, R.F.; Shyam Kumar, M.B.; Kannapiran, R.K.; Feroskhan, M. Enhancement of heat transfer in paraffin wax PCM using nano graphene composite for industrial helmets. J. Energy Storage 2019, 26. [Google Scholar] [CrossRef]
- Salyan, S.; Suresh, S. Study of thermo-physical properties and cycling stability of D-Mannitol-copper oxide nanocomposites as phase change materials. J. Energy Storage 2018, 15, 245–255. [Google Scholar] [CrossRef]
- Mishra, A.K.; Lahiri, B.B.; Philip, J. Thermal conductivity enhancement in organic phase change material (phenol-water system) upon addition of Al2O3, SiO2 and TiO2 nano-inclusions. J. Mol. Liq. 2018, 269, 47–63. [Google Scholar] [CrossRef]
- Águila, V.B.; Vasco, D.A.; Galvez, P.P.; Zapata, P.A.; Vasco, D.A.; Galvez, P.; Zapata, P.A. Effect of temperature and CuO-nanoparticle concentration on the thermal conductivity and viscosity of an organic phase-change material. Int. J. Heat Mass Transf. 2018, 120, 1009–1019. [Google Scholar] [CrossRef]
- Mishra, A.K.; Lahiri, B.B.; Solomon, V.; Philip, J. Nano-inclusion aided thermal conductivity enhancement in palmitic acid/di-methyl formamide phase change material for latent heat thermal energy storage. Thermochim. Acta 2019, 678. [Google Scholar] [CrossRef]
- Choi, D.H.; Lee, J.; Hong, H.; Kang, Y.T. Thermal conductivity and heat transfer performance enhancement of phase change materials (PCM) containing carbon additives for heat storage application. Int. J. Refrig. 2014, 42, 112–120. [Google Scholar] [CrossRef]
- Vivekananthan, M.; Amirtham, V.A. Characterisation and thermophysical properties of graphene nanoparticles dispersed erythritol PCM for medium temperature thermal energy storage applications. Thermochim. Acta 2019, 676, 94–103. [Google Scholar] [CrossRef]
- He, M.; Yang, L.; Lin, W.; Chen, J.; Mao, X.; Ma, Z. Preparation, thermal characterization and examination of phase change materials (PCMs) enhanced by carbon-based nanoparticles for solar thermal energy storage. J. Energy Storage 2019, 25. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, W.; Zhang, S.; Tian, D.; Tian, Z. Preparation and characterization of new nano-particle mixed as thermal storage material. Appl. Therm. Eng. 2019, 163. [Google Scholar] [CrossRef]
- Al Ghossein, R.M.; Hossain, M.S.; Khodadadi, J.M. Experimental determination of temperature-dependent thermal conductivity of solid eicosane-based silver nanostructure-enhanced phase change materials for thermal energy storage. Int. J. Heat Mass Transf. 2017, 107, 697–711. [Google Scholar] [CrossRef] [Green Version]
- Gupta, N.; Kumar, A.; Dhawan, S.K.; Dhasmana, H.; Kumar, A.; Kumar, V.; Verma, A.; Jain, V.K. Metal nanoparticles enhanced thermophysical properties of phase change material for thermal energy storage. Mater. Today Proc. 2020. [Google Scholar] [CrossRef]
- Aslfattahi, N.; Saidur, R.; Arifutzzaman, A.; Sadri, R.; Bimbo, N.; Sabri, M.F.M.; Maughan, P.A.; Bouscarrat, L.; Dawson, R.J.; Said, S.M.; et al. Experimental investigation of energy storage properties and thermal conductivity of a novel organic phase change material/MXene as A new class of nanocomposites. J. Energy Storage 2020, 27. [Google Scholar] [CrossRef]
- Zhu, X.; Han, L.; Lu, Y.; Wei, F.; Jia, X. Geometry-induced thermal storage enhancement of shape-stabilized phase change materials based on oriented carbon nanotubes. Appl. Energy 2019, 254. [Google Scholar] [CrossRef]
- Prabakaran, R.; Sidney, S.; Lal, D.M.; Selvam, C.; Harish, S. Solidification of Graphene-Assisted Phase Change Nanocomposites inside a Sphere for Cold Storage Applications. Energies 2019, 12, 3473. [Google Scholar] [CrossRef] [Green Version]
- Ranjbar, S.G.; Roudini, G.; Barahuie, F. Fabrication and characterization of phase change material-SiO2 nanocomposite for thermal energy storage in buildings. J. Energy Storage 2020, 27. [Google Scholar] [CrossRef]
- Frusteri, F.; Leonardi, V.; Vasta, S.; Restuccia, G. Thermal conductivity measurement of a PCM based storage system containing carbon fibers. Appl. Therm. Eng. 2005, 25, 1623–1633. [Google Scholar] [CrossRef]
- Xiao, X.; Zhang, P.; Li, M. Effective thermal conductivity of open-cell metal foams impregnated with pure paraffin for latent heat storage. Int. J. Therm. Sci. 2014, 81, 94–105. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, Z.; Jia, L.; Yang, L. Paraffin and paraffin/aluminum foam composite phase change material heat storage experimental study based on thermal management of Li-ion battery. Appl. Therm. Eng. 2015, 78, 428–436. [Google Scholar] [CrossRef]
- Fleming, E.; Wen, S.; Shi, L.; Da Silva, A.K. Experimental and theoretical analysis of an aluminum foam enhanced phase change thermal storage unit. Int. J. Heat Mass Transf. 2015, 82, 273–281. [Google Scholar] [CrossRef]
- Huang, X.; Lin, Y.; Alva, G.; Fang, G. Thermal properties and thermal conductivity enhancement of composite phase change materials using myristyl alcohol/metal foam for solar thermal storage. Sol. Energy Mater. Sol. Cells 2017, 170, 68–76. [Google Scholar] [CrossRef]
- Li, T.X.; Wu, D.L.; He, F.; Wang, R.Z. Experimental investigation on copper foam/hydrated salt composite phase change material for thermal energy storage. Int. J. Heat Mass Transf. 2017, 115, 148–157. [Google Scholar] [CrossRef]
- Xiao, X.; Zhang, P.; Li, M. Preparation and thermal characterization of paraffin/metal foam composite phase change material. Appl. Energy 2013, 112, 1357–1366. [Google Scholar] [CrossRef]
- Righetti, G.; Lazzarin, R.; Noro, M.; Mancin, S. Phase change materials embedded in porous matrices for hybrid thermal energy storages: Experimental results and modeling Résultats expérimentaux et modélisation concernant des matériaux à changement de phase incorporées dans des matrices poreuses pour. Int. J. Refrig. 2019, 106, 266–277. [Google Scholar] [CrossRef]
- Zheng, H.; Wang, C. Numerical and Experimental Studies on the Heat Transfer Performance of Copper Foam Filled with Paraffin. Energies 2017, 10, 902. [Google Scholar] [CrossRef] [Green Version]
- Zhu, C.; Ran, F.; Fang, G. Thermal properties improvement of lauric acid/iron foam composites with graphene nanoplates as thermal energy storage materials. J. Energy Storage 2020, 27. [Google Scholar] [CrossRef]
- Yang, X.; Wei, P.; Cui, X.; Jin, L.; He, Y.L. Thermal response of annuli filled with metal foam for thermal energy storage: An experimental study. Appl. Energy 2019, 250, 1457–1467. [Google Scholar] [CrossRef]
- Liu, Y.; Duan, J.; He, X.; Wang, Y. Experimental investigation on the heat transfer enhancement in a novel latent heat thermal storage equipment. Appl. Therm. Eng. 2018, 142, 361–370. [Google Scholar] [CrossRef]
- Chen, X.; Li, X.; Xia, X.; Sun, C.; Liu, R. Thermal Performance of a PCM-Based Thermal Energy Storage with Metal Foam Enhancement. Energies 2019, 12, 3275. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Li, M.J.; Zheng, Z.J.; Xue, X.D. Melting performance enhancement of phase change material by a limited amount of metal foam: Configurational optimization and economic assessment. Appl. Energy 2018, 212, 868–880. [Google Scholar] [CrossRef]
- Gasia, J.; Maldonado, J.M.; Galati, F.; De Simone, M.; Cabeza, L.F. Experimental evaluation of the use of fins and metal wool as heat transfer enhancement techniques in a latent heat thermal energy storage system. Energy Convers. Manag. 2019, 184, 530–538. [Google Scholar] [CrossRef]
- Fukai, J.; Kanou, M.; Kodama, Y.; Miyatake, O. Thermal conductivity enhancement of energy storage media using carbon fibers. Energy Convers. Manag. 2000, 41, 1543–1556. [Google Scholar] [CrossRef]
- Cheng, F.; Zhang, X.; Wen, R.; Huang, Z.; Fang, M.; Liu, Y.; Wu, X.; Min, X. Thermal conductivity enhancement of form-stable tetradecanol/expanded perlite composite phase change materials by adding Cu powder and carbon fiber for thermal energy storage. Appl. Therm. Eng. 2019, 156, 653–659. [Google Scholar] [CrossRef]
- Zhang, Q.; Luo, Z.; Guo, Q.; Wu, G. Preparation and thermal properties of short carbon fibers/erythritol phase change materials. Energy Convers. Manag. 2017, 136, 220–228. [Google Scholar] [CrossRef]
- Lu, W.; Liu, G.; Xiong, Z.; Wu, Z.; Zhang, G. An experimental investigation of composite phase change materials of ternary nitrate and expanded graphite for medium-temperature thermal energy storage. Sol. Energy 2020, 195, 573–580. [Google Scholar] [CrossRef]
- Fu, W.; Zou, T.; Liang, X.; Wang, S.; Gao, X.; Zhang, Z.; Fang, Y. Thermal properties and thermal conductivity enhancement of composite phase change material using sodium acetate trihydrate–urea/expanded graphite for radiant floor heating system. Appl. Therm. Eng. 2018, 138, 618–626. [Google Scholar] [CrossRef]
- Yuan, M.; Ren, Y.; Xu, C.; Ye, F.; Du, X. Characterization and stability study of a form-stable erythritol/expanded graphite composite phase change material for thermal energy storage. Renew. Energy 2019, 136, 211–222. [Google Scholar] [CrossRef]
- Wu, W.; Wu, W.; Wang, S. Form-stable and thermally induced flexible composite phase change material for thermal energy storage and thermal management applications. Appl. Energy 2019, 236, 10–21. [Google Scholar] [CrossRef]
- Kenisarin, M.; Mahkamov, K.; Kahwash, F.; Makhkamova, I. Enhancing thermal conductivity of paraffin wax 53–57 °C using expanded graphite. Sol. Energy Mater. Sol. Cells 2019, 200. [Google Scholar] [CrossRef]
- Zhang, X.; Zhu, C.; Fang, G. Preparation and thermal properties of n-eicosane/nano-SiO2/expanded graphite composite phase-change material for thermal energy storage. Mater. Chem. Phys. 2020, 240. [Google Scholar] [CrossRef]
- Xiao, Q.; Yuan, W.; Li, L.; Xu, T. Fabrication and characteristics of composite phase change material based on Ba(OH)2·8H2O for thermal energy storage. Sol. Energy Mater. Sol. Cells 2018, 179, 339–345. [Google Scholar] [CrossRef]
- Ren, Y.; Li, P.; Yuan, M.; Ye, F.; Xu, C.; Liu, Z. Effect of the fabrication process on the thermophysical properties of Ca(NO3)2–NaNO3/expanded graphite phase change material composites. Sol. Energy Mater. Sol. Cells 2019, 200. [Google Scholar] [CrossRef]
- Qu, Y.; Wang, S.; Tian, Y.; Zhou, D. Comprehensive evaluation of Paraffin-HDPE shape stabilized PCM with hybrid carbon nano-additives. Appl. Therm. Eng. 2019, 163. [Google Scholar] [CrossRef]
- Li, C.; Yu, H.; Song, Y.; Wang, M.; Liu, Z. A n-octadecane/hierarchically porous TiO2 form-stable PCM for thermal energy storage. Renew. Energy 2020, 145, 1465–1473. [Google Scholar] [CrossRef]
- Li, R.; Zhou, Y.; Duan, X. A novel composite phase change material with paraffin wax in tailings porous ceramics. Appl. Therm. Eng. 2019, 151, 115–123. [Google Scholar] [CrossRef]
- Li, C.; Li, Q.; Cong, L.; Jiang, F.; Zhao, Y.; Liu, C.; Xiong, Y.; Chang, C.; Ding, Y. MgO based composite phase change materials for thermal energy storage: The effects of MgO particle density and size on microstructural characteristics as well as thermophysical and mechanical properties. Appl. Energy 2019, 250, 81–91. [Google Scholar] [CrossRef]
- Gu, X.; Liu, P.; Bian, L.; He, H. Enhanced thermal conductivity of palmitic acid/mullite phase change composite with graphite powder for thermal energy storage. Renew. Energy 2019, 138, 833–841. [Google Scholar] [CrossRef]
- Chen, B.; Han, M.; Zhang, B.; Ouyang, G.; Shafei, B.; Wang, X.; Hu, S. Efficient Solar-to-Thermal Energy Conversion and Storage with High-Thermal-Conductivity and Form-Stabilized Phase Change Composite Based on Wood-Derived Scaffolds. Energies 2019, 12, 1283. [Google Scholar] [CrossRef] [Green Version]
- Qu, Y.; Wang, S.; Zhou, D.; Tian, Y. Experimental study on thermal conductivity of paraffin-based shape-stabilized phase change material with hybrid carbon nano-additives. Renew. Energy 2020, 146, 2637–2645. [Google Scholar] [CrossRef]
- Shuja, S.Z.; Yilbas, B.S.; Shaukat, M.M. Melting enhancement of a phase change material with presence of a metallic mesh. Appl. Therm. Eng. 2015, 79, 163–173. [Google Scholar] [CrossRef]
- Duan, J.; Xiong, Y.; Yang, D. Melting Behavior of Phase Change Material in Honeycomb Structures with Different Geometrical Cores. Energies 2019, 12, 2920. [Google Scholar] [CrossRef] [Green Version]
- Singh, R.; Sadeghi, S.; Shabani, B. Thermal Conductivity Enhancement of Phase Change Materials for Low-Temperature Thermal Energy Storage Applications. Energies 2019, 12, 75. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Yu, Z.(J.); Yang, T.; Qin, D.; Li, S.; Zhang, G.; Haghighat, F.; Joybari, M.M. A review on macro-encapsulated phase change material for building envelope applications. Build. Environ. 2018, 144, 281–294. [Google Scholar] [CrossRef]
- Delgado, M.; Lázaro, A.; Mazo, J.; Zalba, B. Review on phase change material emulsions and microencapsulated phase change material slurries: Materials, heat transfer studies and applications. Renew. Sustain. Energy Rev. 2012, 16, 253–273. [Google Scholar] [CrossRef]
- Zhu, Y.; Qin, Y.; Liang, S.; Chen, K.; Tian, C.; Wang, J.; Luo, X.; Zhang, L. Graphene/SiO2/n-octadecane nanoencapsulated phase change material with flower like morphology, high thermal conductivity, and suppressed supercooling. Appl. Energy 2019, 250, 98–108. [Google Scholar] [CrossRef]
- Zhong, Y.; Zhao, B.; Lin, J.; Zhang, F.; Wang, H.; Zhu, Z.; Dai, Z. Encapsulation of high-temperature inorganic phase change materials using graphite as heat transfer enhancer. Renew. Energy 2019, 133, 240–247. [Google Scholar] [CrossRef]
- Zhang, Z.; Lian, Y.; Xu, X.; Xu, X.; Fang, G.; Gu, M. Synthesis and characterization of microencapsulated sodium sulfate decahydrate as phase change energy storage materials. Appl. Energy 2019, 255. [Google Scholar] [CrossRef]
- Yu, S.; Wang, X.; Wu, D. Microencapsulation of n-octadecane phase change material with calcium carbonate shell for enhancement of thermal conductivity and serving durability: Synthesis, microstructure, and performance evaluation. Appl. Energy 2014, 114, 632–643. [Google Scholar] [CrossRef]
- Cheng, T.; Wang, N.; Wang, H.; Sun, R.; Wong, C.P. A newly designed paraffin@VO2 phase change material with the combination of high latent heat and large thermal conductivity. J. Colloid Interface Sci. 2020, 559, 226–235. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Qin, Y.; Wei, C.; Liang, S.; Luo, X.; Wang, J.; Zhang, L. Nanoencapsulated phase change materials with polymer-SiO2 hybrid shell materials: Compositions, morphologies, and properties. Energy Convers. Manag. 2018, 164, 83–92. [Google Scholar] [CrossRef]
- Xia, Y.; Cui, W.; Ji, R.; Huang, C.; Huang, Y.; Zhang, H.; Xu, F.; Huang, P.; Li, B.; Sun, L. Design and synthesis of novel microencapsulated phase change materials with enhancement of thermal conductivity and thermal stability: Self-assembled boron nitride into shell materials. Colloids Surfaces A Physicochem. Eng. Asp. 2020, 586, 124225. [Google Scholar] [CrossRef]
- Wang, X.; Li, C.; Zhao, T. Fabrication and characterization of poly(melamine-formaldehyde)/silicon carbide hybrid microencapsulated phase change materials with enhanced thermal conductivity and light-heat performance. Sol. Energy Mater. Sol. Cells 2018, 183, 82–91. [Google Scholar] [CrossRef]
- Praveen, B.; Suresh, S.; Pethurajan, V. Heat transfer performance of graphene nano-platelets laden micro-encapsulated PCM with polymer shell for thermal energy storage based heat sink. Appl. Therm. Eng. 2019, 156, 237–249. [Google Scholar] [CrossRef]
- Jia, X.; Zhai, X.; Cheng, X. Thermal performance analysis and optimization of a spherical PCM capsule with pin-fins for cold storage. Appl. Therm. Eng. 2019, 148, 929–938. [Google Scholar] [CrossRef]
- Puertas, A.M.; Romero-Cano, M.S.; De Las Nieves, F.J.; Rosiek, S.; Batlles, F.J. Simulations of Melting of Encapsulated CaCl2•6H2O for Thermal Energy Storage Technologies. Energies 2017, 10, 568. [Google Scholar] [CrossRef] [Green Version]
- Feng, G.H.; Liang, D.; Huang, K.L.; Wang, Y. Thermal performance difference of phase change energy storage units based on tubular macro-encapsulation. Sustain. Cities Soc. 2019, 50. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, X.; Wu, D. Silica encapsulation of n-octadecane via sol-gel process: A novel microencapsulated phase-change material with enhanced thermal conductivity and performance. J. Colloid Interface Sci. 2010, 343, 246–255. [Google Scholar] [CrossRef]
PCM | Melting Temperature, (°C) | Latent Heat, (kJ/kg) | Thermal Conductivity, (W/(m·K)) | |
---|---|---|---|---|
Liquid State | Solid State | |||
Organic | ||||
n-Tetradecane (C14) | 6 | 229 | not available | 0.21 |
n-Octadecane (C18) | 28.4 | 244 | 0.148 | 0.358 |
Caprylic acid | 16 | 148.6 | 0.149 | not available |
Naphthalene | 80 | 147.7 | 0.132 | 0.341 |
Erythritol | 118.0 | 339.8 | 0.326 | 0.733 |
Inorganic | ||||
CaCl2 6 H2O | 29 | 190.8 | 0.540 | 1.088 |
Ba(OH)2 8 H2O | 78 | 265.7 | 0.653 | 1.255 |
Mg(NO3)2 6 H2O | 89 | 162.8 | 0.490 | 0.611 |
MgCl2 6 H2O | 117 | 168.6 | 0.570 | 0.694 |
KNO3 | 333 | 266.0 | 0.5 1 |
Reference | PCM | Additive | Additive Fraction | Melting Temperature, (°C) | Latent Heat, (kJ/kg) | Thermal Conductivity (W/(m∙K)) 1 | Maximum Thermal Conductivity Enhancement, (Times) | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
PCM | NEPCM | PCM | NEPCM | PCM | Additive | Liquid | Solid | ||||
Sami and Etesami [43] | Paraffin 4 | TiO2 | 3 wt.% | 58.9 | 56.0 | 137.8 | 167 | 0.08 (l) 0.147 (s) | n.a. | 1.79 | 1.34 |
Lin and Al-Kayiem [42] | Paraffin wax 4 | Cu | 2.0 wt.% | 60.42 | 57.81 | 184.2 | 157.3 | 0.172 | 401 | 1.86 3 | |
Ali et al. [47] | Paraffin wax 4 | Nano graphene | 3 wt.% | 29.83 | 28.12 | 230.08 | 216.10 | 0.123 (l) 0.185 (s) | n.a. | 2.46 | n.a. |
Aslfattahi et al. [58] | Paraffin wax 4 | Ti3C2 | 0.3 wt.% | 69.8 | 71.7 | 110.68 | 99.53 | 0.197 (s) | n.a. | 1.16 3 | |
Zhu et al. [59] | Paraffin wax 4 | a-CNT | 7 wt.% | 47.36–58.84 | 46.72–57.02 | 196.47 | 218.56 | 0.24 | n.a. | n.a. | 2.33 |
r-CNT | 15 wt.% | 45.82–56.84 | 174.12 | n.a. | n.a. | n.a. | |||||
Ranjbar et al. [61] | N-heptadecane | SiO2 | 33.3 wt.% | n.a. | 25.6 | n.a. | 123.8 | 0.1662 | n.a. | 1.71 3 | n.a. |
EG | 7 wt.% | 6.8 | 136.3 | 300 | 3.36 | n.a. | |||||
Águila et al. [50] | Octadecane | CuO | 10 w/v.% | 28–30 | n.a. | n.a. | n.a. | 0.131 (l) 0.147 (s) | 18 | n.a. | 1.09 |
Ghossein et al. [56] | Eicosane | Ag | 10 wt.% | 36.4 | 33.5 | 241 | 78.3 | n.a. | n.a. | n.a. | 1.32 |
Vivekananthan and Amirtham [53] | Erythritol | GNP | 1 wt.% | 127.52 | 120.01 | 311.00 | 338.60 | 0.326 (l) 0.733 (s) | n.a. | n.a. | 1.53 |
Soni et al. [44] | Erythritol | Cu | 2.5 vol.% | 118 | n.a. | 339.8 | 288.8 | 0.326 (l) 0.733 (s) | 400 | 1.0767 | 1.0765 |
Al | 2.5 vol.% | n.a. | 322.7 | 237 | 1.0766 | 1.0762 | |||||
SiO2 | 2.5 vol.% | n.a. | 325.7 | 1.38 | 1.0394 | 1.0172 | |||||
TiO2 | 2.5 vol.% | n.a. | 322.1 | 8.4 | 1.0684 | 1.0594 | |||||
Salyan and Suresh [48] | D-mannitol | CuO | 0.5 wt.% | 166.38–168.38 | 165.76–168.76 | 281.89 | 273.20 | 1.308(s) | n.a. | n.a. | 1.25 |
Wang et al. [41] | Octanoic acid/myristic acid | MWCNT | 0.01 wt.% | 7.13 | n.a. | 146.1 | n.a. | 0.2971 (l) | 2000–6000 | 1.23 | n.a. |
EG | 7 wt.% | 6.8 | 136.3 | 300 | 3.36 | n.a. | |||||
Martín et al. [45] | Capric acid | SiO2 | 1.5 wt.% | 31.5 | 31.2 | 150 | 166 | 0.296 (l) | n.a. | 1.79 | n.a. |
Capric acid/myristic acid | SiO2 | 1.5 wt.% | 21.9 | 22.1 | 148 | 158 | n.a. | n.a. | 1.42 | n.a. | |
He et al. [54] | Myristic acid | GNP | 3 wt.% | 54–55 | 54.3 | 194.90 | 187.19 | 0.1846 (l) 0.2186 (s) | n.a. | 1.60 | 2.76 |
MWCNT | 3 wt.% | 54.4 | 188.47 | n.a. | 1.13 | 1.47 | |||||
NG | 3 wt.% | 54.6 | 188.90 | n.a. | 1.12 | 1.44 | |||||
Mishra et al. [51] | Palmitic acid/dimethyl formamide | Al2O3 | 2 vol.% | 36 | n.a. | 25 | n.a. | 0.162 (l) 0.196 (s) | 35 | 1.17 | 1.59 |
GNP | 2 vol.% | n.a. | n.a. | 3000 | 1.24 | 1.95 | |||||
MWCNT | 1.5 vol.% | n.a. | n.a. | 6600 | 1.18 | 1.72 | |||||
CBNP | 4 vol.% | n.a. | n.a. | 0.182 | 1.12 | 3.05 | |||||
Masoumi et al. [46] | Stearic acid | TiO2 | 0.36 wt.% | 62–64 | 61.6–63.6 | 134 | 130.5 | 0.15 (l) 0.20 (s) | n.a. | 1.07 | 1.175 |
Choi et al. [52] | Stearic acid | MWCNT | 0.1 vol.% | 64–71 | n.a. | 203 | n.a. | 0.17 (l) 0.33 (s) | 3000 | 1.015 | n.a. |
Graphite | 0.1 vol.% | n.a. | n.a. | 200 | 1.099 | n.a. | |||||
Graphene | 0.1 vol.% | n.a. | n.a. | 5000 | 1.215 | n.a. | |||||
Prabakaran et al. [60] | Fatty acid-based OM08 | GNP | 0.5 vol.% | 8–9 | n.a. | 180 | n.a. | 0.168 (l) 0.235 (s) | n.a. | 1.46 | 2.02 |
Liu et al. [55] | KAl(SO4)2∙12H2O/Na2SO4∙10H2O | Nanocarbon | 1 wt.% | 67.03 | 65.68 | 135.7 | 132.2 | 0.546 (s) | n.a. | n.a. | 1.67 |
Gupta et al. [57] | Magnesium nitrate hexahydrate | Fe | 0.5 wt.% | n.a. | n.a. | n.a. | n.a. | 0.4 (s) | n.a. | n.a. | 1.525 |
Cu | 0.5 wt.% | n.a. | n.a. | n.a. | n.a. | 1.575 | |||||
Mishra et al. [49] | Phenol-water mixture | Al2O3 | 4 wt.% | 24.5 | n.a. | n.a. | n.a. | 0.170 (l) 0.195 (s) | 35 | 1.070 | 1.412 |
SiO2 | 2/3 wt.% | n.a. | n.a. | 1.4 | 1.041 | 1.382 | |||||
HP-SiO2 2 | 1/3 wt.% | n.a. | n.a. | 1.4 | 1.024 | 1.265 | |||||
TiO2 | 4/3 wt.% | n.a. | n.a. | 15 | 1.094 | 1.382 | |||||
Al2O3+CBNP | 4 + 0.04 wt.% | n.a. | n.a. | 35 + n.a. | 1.076 | 1.459 | |||||
SiO2+CBNP | 3 + 0.04 wt.% | n.a. | n.a. | 1.4 + n.a. | 1.041 | 1.453 | |||||
TiO2+CBNP | 3 + 0.02 wt.% | n.a. | n.a. | 15 + n.a. | 1.088 | 1.412 |
Reference | PCM | Additive | Type of Heat Exchanger/Thermal Storage Unit | Maximum Improvement, (%) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Type | Latent Heat, (kJ/kg) | Thermal Conductivity, (W/(m∙K)) 1 | Type | Porosity, (%) | Pore Density, (PPI) | Thermal Conductivity, (W/(m∙K)) | Melting Time | Solidification Time | ||
Yang et al. [72] | Paraffin wax 4 | 250 | 0.125 (l) 0.301 (s) | Copper foam | 96.8 | 20 | 400 | Shell-and-tube; vertical | 36 | n.a. |
Liu et al. [73] | Paraffin 4 | 170.4 | 0.21 (l, s) | Copper foam | 93 | 10 | n.a. | Rectangular box with U-shape heating tube | 47.6 | 8.3 |
Chen et al. [74] | Paraffin RT 58 | 181 | 0.2 | Copper foam | 90 | 10 | 387.6 | Plate heat exchanger | 76.8 | 72.2 |
Righetti et al. [69] | RT40 | 165 | 0.21 (l, s) | Alumina foams: 2 | Vertical tubes in a water bath | |||||
I | 92.1 | 5 | 170 | 93.0 | 80.8 | |||||
II | 89.3 | 10 | 170 | 93.6 | 88.3 | |||||
III | 92.7 | 10 | 170 | 90.3 | 83.3 | |||||
IV | 94.8 | 10 | 170 | 88.6 | 79.2 | |||||
V | 92.7 | 20 | 170 | 91.3 | 84.2 | |||||
VI | 91.4 | 40 | 170 | 91.3 | 82.5 | |||||
Alumina periodic structure 3 | 92 | n.a. | n.a. | 63.0 | 37.5 | |||||
Gasia et al. [76] | N-octadecane | 243.5 | 0.148 (l) 0.190 (s) | Rectangular aluminum fins | - | - | n.a. | LHTES based on the shell-and-tube heat exchangers | n.a. | n.a. |
Metallic wool | - | - | n.a. | n.a. | n.a. | |||||
Metallic wool (arbitrarily) | - | - | n.a. | n.a. | n.a. | |||||
Xu et al. [75] | Li2CO3-K2CO3 | 342 | 0.6 | Copper foam | 95 | 10 | 350 | Horizontal shell-and-tube | 86.2 | n.a. |
Reference | PCM | Additive | Additive Fraction | Additive Characteristics | Melting Temperature, (°C) | Latent Heat, (kJ/kg) | Thermal Conductivity (W/(m∙K)) 1 | Maximum Thermal Conductivity Enhancement, (Times) | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
PCM | CPCM | PCM | CPCM | PCM | Additive | Liquid | Solid | |||||
Fukai et al. [77] | Paraffin wax 6 | Carbon fiber | 2 vol.% | Diameter: 10 µm Length: 5 mm | 41–43 | n.a. | n.a. | n.a. | 0.26 (s) | 220 | n.a. | 6 (random) 25 (brush) |
Zhu et al. [59] | Paraffin wax 6 | Expanded vermiculite | 40 wt.% | n.a. | 47.36–58.84 | 46.79–56.77 | 196.47 | 119.42 | 0.24 | n.a. | n.a. | n.a. |
Kenisarin et al. [84] | Paraffin wax 6 | Expandable graphite | 6 wt.% | (200–1200) µm | 49–61 | 48–60 | 143.78 | 136.03 | 0.258 (s) | n.a. | 2.11 | 3.79 |
6 wt.% | (50–200) µm | 45–50 | 141.82 | n.a. | 3.02 | 4.90 | ||||||
Li et al. [90] | Paraffin wax 6 | Tailing porous ceramics | n.a. | Porosity: 71% Pore density: n.a. | 50.3 | 49.9 | 196.0 | 71.1 | 0.25 (s) | 1.41 | n.a. | 1.8 |
Wu et al. [83] | Paraffin wax 6 | OBC + EG | 18 + 10 wt.% | n.a. | 51.43 | 47.42 | 200.6 | 176.7 | 0.45 | n.a. | 12.22 2 | |
Zheng and Wang [70] | Paraffin 6 | Copper foam | n.a. | Porosity: 93% Pore density: 10 PPI | 48–50 | n.a. | 220 | n.a. | 0.26 | 398 | 27.19 2 | |
Xiao et al. [68] | Paraffin 6 | Nickel foam | n.a. | Porosity: >95% Pore density: 5 PPI | 52.10 | 52.70 | 189.4 | 144.4 | 0.305 (s) | 91.4 | n.a. | 3.93 |
Copper foam | n.a. | Porosity: >95% Pore density: 10 PPI | 53.06 | 135.2 | 398 | n.a. | 16.07 | |||||
Xiao et al. [63] | Paraffin 6 | Nickel foam | n.a. | Porosity: 90.61% Pore density: 25 PPI | n.a. | n.a. | n.a. | n.a. | 0.354 | 91.4 | 6.58 2 | |
Copper foam | n.a. | Porosity: 88.89% Pore density: n.a. | n.a. | n.a. | 398 | 45.22 2 | ||||||
Wang et al. [64] | Paraffin 6 | Aluminum foam | n.a. | Porosity: 78.95% Pore density: n.a. | n.a. | n.a. | n.a. | n.a. | 0.21 (l) 0.29 (s) | 218 | 219.24 3 | 159.03 3 |
Qu et al. [88] | N-octadecane | HDPE | 20 wt.% | EG granularity: 75 μm MWCNT: Diameter: <8 nm Length: (10–20) μm CNF: Diameter: (200–600) nm Length: (5–50) μm | 28.2 | 28.8 | 239.4 | 189.0 | 0.25 | 0.4 | 1.12 2 | |
HDPE-EG/MWCNT | 20–4/1 wt.% | 28.2 | 29.1 | 239.4 | 170.5 | 0.25 | 0.4–3000/1950 | 5.44 2 | ||||
HDPE-EG/CNF | 20–4/1 wt.% | 28.2 | 168.4 | 0.4–3000/1150 | 4.12 2 | |||||||
Li et al. [89] | N-octadecane | Porous TiO2 | 70 wt.% | Pore size: 15.8 nm | 28.4 | 27.8 | 267.4 | 44.2 | 0.16 | n.a. | 2.81 2 | |
Chen et al. [93] | N-octadecane | Carbonized wood + graphite coating | n.a. | n.a. | 28 | n.a. | 239.9 | 209.1 | 0.28 (s) | 0.46 + n.a. | n.a. | 2.43 |
Zhang et al. [85] | N-eicosane | EG + SiO2 | 7 + 30 wt.% | EG thickness: (5–20) nm EG flake diameter: (5–10) µm SiO2 particle size: 20 nm | 36.90–38.78 | 35.35–37.71 | 243.28 | 135.80 | 0.145 (s) | n.a. | n.a. | 2.30 |
Cheng et al. [78] | Tetradecanol | Copper powder | n.a. | n.a. | 36.6 | 35.8 | 203.5 | 199.8 | 0.481 (s) | 400 | n.a. | 3.30 |
Carbon fiber | n.a. | n.a. | n.a. | n.a | 400–450 | n.a. | 3.36 | |||||
EP | 77.7 wt.% | n.a. | 36.4 | 158.2 | 0.047–0.07 | n.a. | 0.96 | |||||
Copper powder + EP | n.a. | n.a. | 35.5 | 156.7 | - | n.a. | 3.04 | |||||
Carbon fiber + EP | n.a. | n.a. | 34.6 | 155.4 | - | n.a. | 3.13 | |||||
Huang et al. [66] | Myristyl alcohol | Copper foam | 44.6 wt.% | Porosity: n.a. Pore density: 40 PPI | 38.29 | 39.61 | 218.4 | 201.39 | 0.1701 | n.a. | n.a. | 8.54 |
Nickel foam | 16.7 wt.% | Porosity: n.a. Pore density: 40 PPI | 39.55 | 211.53 | n.a. | n.a. | 2.80 | |||||
Yuan et al. [82] | Erythritol | EG | 15 wt.% | n.a. | 116–132 | 98–125 | 244.4 | 198.3 | 0.72 (s) | n.a. | n.a. | 20.85 |
Zhang et al. [79] | Erythritol | Carbon fiber | 10 wt.% | Diameter: 9 µm Length: | 116.3 | 385.3 | 0.77 (s) | |||||
40 µm | n.a. | n.a. | 900 | n.a. | 3.19 | |||||||
225 µm | 118.2 | 340.4 | 900 | n.a. | 5.08 | |||||||
Zhu et al. [71] | Lauric acid | Iron foam | 30.9 wt.% | Porosity: n.a Pore density: 90 PPI | 45.52 | 46.58 | 179.44 | 102.03 | 0.115 | 0.528 | 9.31 2 | |
Iron foam+GNP | 28.6 + 3 wt.% | GNP thickness: (5–20) nm | 46.08 | 95.17 | n.a. | 10.67 2 | ||||||
Gu et al. [92] | Palmitic acid | Mullite | 70 wt.% | n.a. | 66.11 | 64.75 | 213.10 | 54.70 | 0.28 (s) | n.a. | n.a. | 1.14 |
Mullite + graphite powder | 70 wt.% + 5 wt.% | n.a. | n.a. | 52.30 | n.a. | n.a. | 1.86 | |||||
Frusteri et al. [62] | PCM44 (inorganic mixture) | Carbon fiber | 10 wt.% | Diameter: 6 µm Length: | 44 | n.a. | 0.47 (s) | |||||
0.2 mm | n.a. | n.a. | 175–200 | n.a. | 4.25 | |||||||
3 mm | n.a. | n.a. | 175–200 | n.a. | 3.53 | |||||||
6 mm | n.a. | n.a. | 175–200 | n.a. | 3.87 | |||||||
Fleming et al. [65] | Water | Aluminum foam | n.a. | Pore density: 40 PPI | n.a. | n.a. | 333 | 3153) | 0.6 (l) 2.25 (s) | n.a. | 3.00 3 | 2.27 3 |
Li et al. [91] | NaLiCO3 | MgO + graphite flakes | n.a. + 35 wt.% | Light MgO particle size: (3–5) µm | 500.35 | n.a. | 347.9 | n.a. | n.a. | n.a. | n.a. | n.a. |
Xiao et al. [86] | Ba(OH)2∙ 8H2O | MEG | 15 wt.% | Matrix density: 200 g/l | 78.3 | 77.8 | 256.4 | 238.4 | n.a. | n.a. | 1.84 2 | |
Ren et al. [87] | Ca(NO3)2-NaNO3 4 | EG | 7 wt.% | n.a. | 218.15–286.9 | 217.6–285.6 | 185.85 | 169.17 | 0.56 | n.a. | 3.39 2 | |
Ca(NO3)2-NaNO3 5 | 222.8–237.1 | 216.6–267.3 | 88.77 | 82.44 | 0.46 | n.a. | 13.63 2 | |||||
Lu et al. [80] | KNO3-LiNO3-Ca(NO3)2 | EG | 30 wt.% | n.a. | 116.8 | 115.2 | 131.8 | 89.6 | 0.44 | n.a. | 49.75 2 | |
Fu et al. [81] | SAT-urea mixture | EG | 12 wt.% | n.a. | 50.82 | 48.84 | 240.4 | 199.1 | 0.6785 (s) | n.a. | n.a. | 4.13 |
Li et al. [67] | SAT + DHPD | Copper foam | n.a. | Porosity: 92.4% Pore density: 15 PPI | 57–58 | n.a. | 258 | n.a. | n.a. | 398 | 11 2 |
Reference | Core-PCM | Shell | Capsule Size | Melting Temperature, (°C) | Latent Heat, (kJ/kg) | Thermal Conductivity (W/(m∙K)) 1 | Maximum Thermal Conductivity Enhancement, (Times) | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
PCM | Capsule | PCM | Capsule | PCM | Shell | Capsule | Liquid | Solid | ||||
Praveen et al. [108] | Paraffin 3 | Polyurethane | (60–65) µm | 60–62 | 62.31 | 211.93 | 116.71 | n.a. | n.a. | 0.192 | n.a. | n.a. |
Polyurethane + GNP | (60–65) µm | 62.71 | 110.71 | n.a. | 0.379 | n.a. | 1.97 (compared to PCM/ polyurethane) | |||||
Cheng et al. [104] | Paraffin wax (C26H54) | VO2 | (5–15) µm (average 8 µm) | 58.71 | 58.22 | 193 | 163 | 0.28 | 4–6 | 1.53 | 5.46 2 | |
Zhu et al. [100] | N-octadecane | SiO2 | 440 nm | 30.5 | 28.31 | 202.0 | 109.7 | n.a. | n.a. | 0.6416 (s) 1.4941 (s) | n.a. | n.a. |
SiO2 + 2.5 wt.% of graphene | 390 nm | 27.72 | 108.2 | n.a. | n.a. | n.a. | ||||||
Yu et al. [103] | N-octadecane | CaCO3 | 5 µm | 28.74 | 28.09 | 209.10 | 46.93 | 0.153 | 2.467 | 1.674 | 10.94 2 | |
Zhu et al. [105] | N-octadecane | SiO2 | 335 nm | 30.5 | 27.5 | 202.0 | 108.6 | 0.153 (s) | n.a. | 0.3332 | n.a. | 2.18 |
PS-SiO2 | 303 nm | 28.1 | 86.1 | n.a. | 0.3844 | n.a. | 2.51 | |||||
PHEMA-SiO2 | 449 nm | 27.9 | 104.3 | n.a. | 0.3823 | n.a. | 2.50 | |||||
Xia et al. [106] | N-octadecane | MF | (5–10) µm | 26.4 | 26.2 | 205.4 | 125.9 | n.a. | n.a. | 0.084 | n.a. | n.a. |
MF-BN 0.5 g | (5–10) µm | 26.1 | 131.2 | n.a. | 0.109 | n.a. | 1.2976 (compared to PCM/MF) | |||||
Wang et al. [107] | N-octadecane | PMF | 3 µm | 29.9 | 29.8 | 250.6 | 173.0 | n.a. | n.a. | n.a. | n.a. | n.a. |
PMF-SiC 7 wt.% | n.a. | 29.5 | 168.0 | n.a. | n.a. | 1.60 (compared to PCM/PMF) 2 | ||||||
Zhang et al. [112] | N-octadecane | Silica | 8.76 µm | 26.7 | 26.9 | 214.6 | 123.0 | 0.1505 (s) | 1.2960 | 0.6213 | n.a. | 4.13 |
Zhong et al. [101] | NaCl | Graphite | 60 mm | 808 | n.a. | 294 | n.a. | 0.40 (s) | 28.01–31.55 | n.a. | n.a. | n.a. |
NaCl + graphite + cellulose | Graphite | 60 mm | 803 | n.a. | 159.6 | n.a. | 13.93 (s) | n.a. | n.a. | n.a. | ||
Zhang et al. [102] | Na2SO4∙10H2O | SiO2 | 500 nm | 33.7 | 33.6 | 211.9 | 125.6 | n.a. | n.a. | n.a. | n.a. | n.a. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Radomska, E.; Mika, L.; Sztekler, K. The Impact of Additives on the Main Properties of Phase Change Materials. Energies 2020, 13, 3064. https://doi.org/10.3390/en13123064
Radomska E, Mika L, Sztekler K. The Impact of Additives on the Main Properties of Phase Change Materials. Energies. 2020; 13(12):3064. https://doi.org/10.3390/en13123064
Chicago/Turabian StyleRadomska, Ewelina, Lukasz Mika, and Karol Sztekler. 2020. "The Impact of Additives on the Main Properties of Phase Change Materials" Energies 13, no. 12: 3064. https://doi.org/10.3390/en13123064
APA StyleRadomska, E., Mika, L., & Sztekler, K. (2020). The Impact of Additives on the Main Properties of Phase Change Materials. Energies, 13(12), 3064. https://doi.org/10.3390/en13123064