Comparison of Laboratory and Computational Models of Selected Thermal-Technical Properties of Constructions Systems Based on Wood
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characterisation of the Examined Design Variants
2.2. Method of Measuring Heat Flows in Determining the Thermal Transmittance Coefficient
2.3. Calculation Method of Determining the Thermal Transmittance Coefficient
3. Results and Discussion
4. Discussion
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Ramage, M.H.; Burridge, H.C.; Busse-Wicher, M.; Fereday, G.; Reynolds, T.P.S.; Shah, D.; Wu, G.; Yu, L.; Fleming, P.; Densley-Tingley, D.; et al. The wood from the trees: The use of timber in construction. Renew. Sustain. Energy Rev. 2017, 68, 333–359. [Google Scholar] [CrossRef]
- Allen, E.; Iano, J. Fundamentals of Building Construction: Materials and Methods; John Wiley & Sons: Hoboken, NJ, USA, 2019. [Google Scholar]
- Vaverka, J. Wooden Buildings for Housing, 1st ed.; Grada: Praha, Czech Republic, 2008; p. 376. ISBN 978-80-247-2205-4. [Google Scholar]
- Ho, T.; Dao, T.; Aaleti, S.; Van De Lindt, J.W.; Rammer, D. Hybrid system of unbonded post-tensioned CLT panels and light-frame wood shear walls. J. Struct. Eng. 2017, 143, 04016171. [Google Scholar] [CrossRef]
- Bederka, M.; Makýš, P.; Ďubek, M.; Petro, M. “Cement screeds—Selected methods of humidity measurement”, Advances and Trends in Engineering Sciences and Technologies III. In Proceedings of the 3rd International Conference on Engineering Sciences and Technologies, ESaT 2018, Tatranské Matliare, Slovak, 12–14 September 2018; p. 299. [Google Scholar]
- Gregorová, V.; Ďubek, M.; Ďubek, S.; Štefunková, Z. An experimental preparation of fibre concrete to software’s detection of fibres. IOP Conf. Ser. Mater. Sci. Eng. 2019, 549, 012018. [Google Scholar] [CrossRef]
- Singh, T.; Page, D.; Simpson, I. Manufactured structural timber building materials and their durability. Constr. Build. Mater. 2019, 217, 84–92. [Google Scholar] [CrossRef]
- Kobl, J. Wooden Buildings: Load-Bearing Structure Systems, Perimeter Cladding; Grada: Praha, Czech Republic, 2011; p. 320. ISBN 978-80-247-4071-3. [Google Scholar]
- Veselý, V. Massive Wooden Buildings and Requirements for Them. 2013. Available online: https://stavba.tzbinfo.cz/vlastnostidrevostaveb/10345-masivni-drevostavby-a-pozadavky-na-ne-kladene (accessed on 10 February 2020).
- Berglund, L.A.; Burgert, I. Bioinspired wood nanotechnology for functional materials. Adv. Mater. 2018, 30, 1704285. [Google Scholar] [CrossRef] [PubMed]
- Quesada-Pineda, H.; Smith, R.; Berger, G. Drivers and Barriers of Cross-Laminated Timber (clt) Production and Commercialization: A Case of Study of Western Europe’s clt Industry; BioProducts Business: Monona, WI, USA, 2018; pp. 29–38. [Google Scholar]
- Woodard, A.C.; Milner, H.R. Sustainability of timber and wood in construction. In Sustainability of Construction Materials; Woodhead Publishing: Cambridge, UK, 2016; pp. 129–157. [Google Scholar]
- Takabayashi, H.; Kado, K.; Hirasawa, G. Versatile Robotic Wood Processing Based on Analysis of Parts Processing of Japanese Traditional Wooden Buildings. In Robotic Fabrication in Architecture, Art and Design; Springer: Cham, Switzerland, September 2018; pp. 221–231. [Google Scholar]
- Brandner, R.; Flatscher, G.; Ringhofer, A.; Schickhofer, G.; Thiel, A. Cross laminated timber (CLT): Overview and development. Eur. J. Wood Wood Prod. 2016, 74, 331–351. [Google Scholar] [CrossRef]
- Flores, E.I.S.; Yanez, S.J.; Guzmán, C.F.; García-Macías, E.; Carlos, J. Multi-Scale Structural Mechanics for the Modelling of Cross-Laminated Timber Buildings; Universidad de Santiago de Chile: Santiago, Chile, 2018. [Google Scholar]
- Matová, H.; Kaputa, V. Attitudes of active and upcoming architects towards wood: The case study in Slovakia. Acta Fac. Xylologiae 2018, 60, 199–210. [Google Scholar]
- Hanak, T.; Korytarova, J. Procurement management in construction: Study of Czech municipalities. Open Eng. 2019, 9, 151–158. [Google Scholar] [CrossRef]
- Gašparík, J.; Szalayová, S.; Alamro, B.; Gašparík, M. Optimization method of elevator selection for the realization of construction processes, Advances and Trends in Engineering Sciences and Technologies III. In Proceedings of the 3rd International Conference on Engineering Sciences and Technologies, ESaT 2018, Tatranské Matliare, Slovak, 12–14 September 2018; p. 369. [Google Scholar]
- Isa, M.; Bakar, M.A.; Hasim, M.S.; Anuar, M.K.; Sipan, I.; Nor, M.Z.M. Data quality control for survey instrument of office investors in rationalising green office building investment in Kuala Lumpur by the application of Rasch analysis. Facilities 2017, 35, 638–657. [Google Scholar] [CrossRef]
- Nirmul, D.; Scott, J. The New Resilient Built Environment: Perspectives from Investors and Owners of Private Buildings. In Optimizing Community Infrastructure; Butterworth-Heinemann: Oxford, UK, 2020; pp. 181–195. [Google Scholar]
- Espinoza, O.; Trujillo, V.R.; Mallo, M.F.L.; Buehlmann, U. Cross-laminated timber: Status and research needs in Europe. BioResources 2015, 11, 281–295. [Google Scholar] [CrossRef]
- Lukacs, I.; Björnfot, A.; Tomasi, R. Strength and stiffness of cross-laminated timber (CLT) shear walls: State-of-the-art of analytical approaches. Eng. Struct. 2019, 178, 136–147. [Google Scholar] [CrossRef]
- Popovski, M.; Gavric, I. Performance of a 2-story CLT house subjected to lateral loads. J. Struct. Eng. 2016, 142, E4015006. [Google Scholar] [CrossRef]
- Tejchman, J. Evaluation of strength, deformability and failure mode of composite structural insulated panels. Mater. Des. 2014, 54, 1068–1082. [Google Scholar]
- Meng, Q.; Chen, W.; Hao, H. Vulnerability Analyses of Structural Insulated Panels with OSB Skins Strengthened by Basalt Fiber Cloth Subjected to Windborne Debris Impact. Int. J. Struct. Stab. Dyn. 2018, 18, 1850088. [Google Scholar] [CrossRef]
- Murillo, M.; Tutikian, B.F.; Ortolan, V.; Oliveira, M.L.; Sampaio, C.H.; Gómez, L. Fire resistance performance of concrete-PVC panels with polyvinyl chloride (PVC) stay in place (SIP) formwork. J. Mater. Res. Technol. 2019, 8, 4094–4107. [Google Scholar]
- Asdrubali, F.; Ferracuti, B.; Lombardi, L.; Guattari, C.; Evangelisti, L.; Grazieschi, G. A review of structural, thermo-physical, acoustical, and environmental properties of wooden materials for building applications. Build. Environ. 2017, 114, 307–332. [Google Scholar] [CrossRef]
- Motuzienė, V.; Rogoža, A.; Lapinskienė, V.; Vilutienė, T. Construction solutions for energy efficient single-family house based on its life cycle multi-criteria analysis: A case study. J. Clean. Prod. 2016, 112, 532–541. [Google Scholar] [CrossRef]
- De Araujo, V.A.; Cortez-Barbosa, J.; Gava, M.; Garcia, J.N.; de Souza, A.J.D.; Savi, A.F.; Morales, E.A.M.; Molina, J.C.; Vasconcelos, J.S.; Christoforo, A.L.; et al. Classification of wooden housing building systems. BioResources 2016, 11, 7889–7901. [Google Scholar] [CrossRef] [Green Version]
- Chwieduk, D.A. Towards modern options of energy conservation in buildings. Renew. Energy 2017, 101, 1194–1202. [Google Scholar] [CrossRef]
- Hrdlicka, T.; Cupal, M. Brick versus wood construction in residential. In International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management; SGEM: Sofia, Bulgaria, 2019; p. 395. [Google Scholar]
- Kaputa, V.; Olšiaková, M.; Maťová, H.; Drličková, E. Do preferences for wood-framed houses’ attributes change over time? In Digitalisation and Circular Economy: Forestry and Forestry Based Industry Implications—Proceedings of Scientific Papers; Union of Scientists of Bulgaria: Varna, Bulgaria, 2019; p. 161. [Google Scholar]
- Králiková, R.; Andrejiová, M. Thermal comfort in the working environment—Assessment through objective and subjective approaches—2014. In Proceedings of the 5th ICEEE-2014 International Conference: Global Environmental Change and Population Health: Progress and Challenges, Budapest, Hungary, 19–21 November 2014; pp. 352–356. [Google Scholar]
- Gou, S.; Nik, V.M.; Scartezzini, J.L.; Zhao, Q.; Li, Z. Passive design optimization of newly-built residential buildings in Shanghai for improving indoor thermal comfort while reducing building energy demand. Energy Build. 2018, 169, 484–506. [Google Scholar] [CrossRef]
- Korytárová, J.; Hanák, T.; Kozik, R.; Radziszewska-Zielina, E. Exploring the contractors’ qualification process in public works contracts. Procedia Eng. 2015, 123, 276–283. [Google Scholar] [CrossRef] [Green Version]
- Zgútová, K.; Decký, M.; Šrámek, J.; Drevený, I. Using of alternative methods at earthworks quality control. Procedia Earth Planet. Sci. 2015, 15, 263–270. [Google Scholar] [CrossRef] [Green Version]
- Wang, R.; Lu, S.; Feng, W. A three-stage optimization methodology for envelope design of passive house considering energy demand, thermal comfort and cost. Energy 2020, 192, 116723. [Google Scholar] [CrossRef]
- Antošová, N.; Belániová, B.; Chamulová, B.; Janušová, K.; Takács, J. The protection of environment during cleaning ETICS with biocides, Advances and Trends in Engineering Sciences and Technologies III. In Proceedings of the 3rd International Conference on Engineering Sciences and Technologies, ESaT 2018, Tatranské Matliare, Slovak, 12–14 September 2018; p. 281. [Google Scholar]
- Park, J.Y.; Nagy, Z. Comprehensive analysis of the relationship between thermal comfort and building control research-A data-driven literature review. Renew. Sustain. Energy Rev. 2018, 82, 2664–2679. [Google Scholar] [CrossRef]
- Graessley, S.; Horak, J.; Kovacova, M.; Valaskova, K.; Poliak, M. Consumer attitudes and behaviors in the technology-driven sharing economy: Motivations for participating in collaborative consumption. J. Self-Gov. Manag. Econ. 2019, 7, 25–30. [Google Scholar]
- Buday, P. The most significant factor affecting the calculation of specific heat consumption for heating for family houses according to STN 73 0540. Appl. Mech. Mater. 2016, 820, 171–176. [Google Scholar] [CrossRef]
- Jochim, S. Determining the heat transfer coefficient of log-cabin walls based on one dimensional thermal transmittance. Acta Fac. Xylologiae Zvolen Publica Slovaca 2016, 58, 75. [Google Scholar]
- STN 73 0540. Thermal Performance of Buildings and Components; Thermal Protection of Buildings, 2002. BUILD UP EU. Available online: https://www.buildup.eu/en/practices/publications/slovak-republic-stn-73-0540-3-2012-thermal-protection-buildings-thermal (accessed on 14 June 2020).
- EN ISO 10456. Building Materials and Products—Hygrothermal Properties—Tabulated Design Values and Procedures for Determining Declared and Design Thermal Values; ISO: Geneva, Switzerland, 2007. [Google Scholar]
- Stürzenbecher, R.; Hofstetter, K.; Eberhardsteiner, J. Structural design of Cross Laminated Timber (CLT) by advanced plate theories. Compos. Sci. Technol. 2010, 70, 1368–1379. [Google Scholar] [CrossRef]
- Leijten, A.J. Europe goes green. Procedia Eng. 2017, 171, 104–112. [Google Scholar] [CrossRef]
- Shahnewaz, M.; Tannert, T.; Alam, M.S.; Popovski, M. Capacity-Based Design for Platform-Framed Cross-Laminated Timber Buildings. In Proceedings of the Structures Congress 2017, Denver, CO, USA, 6–8 April 2017. [Google Scholar]
- Jing, L.; Hongpeng, X.; Xiabin, G.; Di, Y. Technical advantages and limitations of cross-laminated timber high-rise buildings. Urban. Archit. 2017, 14, 7. [Google Scholar]
- Frangi, A.; Fontana, M.; Hugi, E.; Jübstl, R. Experimental analysis of cross-laminated timber panels in fire. Fire Saf. J. 2009, 44, 1078–1087. [Google Scholar] [CrossRef]
- Schmid, J.; König, J.; Köhler, J. Fire-exposed cross-laminated timber–modelling and tests. In Proceedings of the World Conference on Timber Engineering, Trentino, Italy, 20–24 June 2010. [Google Scholar]
- Klippel, M.; Schmid, J. Design of cross-laminated timber in fire. Struct. Eng. Int. 2017, 27, 224–230. [Google Scholar] [CrossRef]
- Milward, R.; Popescu, G.H.; Michalikova, K.F.; Musova, Z.; Machova, V. Sensing, smart, and sustainable technologies in Industry 4.0: Cyber-physical networks, machine data capturing systems, and digitized mass production. Econ. Manag. Financ. Mark. 2019, 14, 37–43. [Google Scholar]
- Kovacova, M.; Kliestik, T.; Pera, A.; Grecu, I.; Grecu, G. Big Data Governance of Automated Algorithmic Decision-Making Processes. Rev. Contemp. Philos. 2019, 18, 126–132. [Google Scholar]
- Udell, M.; Stehel, V.; Kliestik, T.; Kliestikova, J.; Durana, P. Towards a smart automated society: Cognitive technologies, knowledge production, and economic growth. Econ. Manag. Financ. Mark. 2019, 14, 44–49. [Google Scholar]
- Chang, S.J.; Wi, S.; Kim, S. Thermal bridging analysis of connections in cross-laminated timber buildings based on ISO 10211. Constr. Build. Mater. 2019, 213, 709–722. [Google Scholar] [CrossRef]
- Alsayegh, G.; Mukhopadhyaya, P.; Wang, J.; Zalok, E.; van Reenen, D. Preliminary characterization of physical properties of cross-laminated-timber (CLT) panels for hygrothermal modelling. Adv. Civ. Eng. Mater. 2013, 2, 20120048. [Google Scholar] [CrossRef]
- Yoo, J.; Chang, S.J.; Lee, J.; Wi, S.; Kim, S. Numerical analysis of hygrothermal properties and behavior of Korean based cross-laminated timber (CLT) wall system to deduce optimal assemblies. J. Clean. Prod. 2019, 213, 1217–1227. [Google Scholar] [CrossRef]
- Wang, L.; Ge, H. Hygrothermal performance of cross-laminated timber wall assemblies: A stochastic approach. Build. Environ. 2016, 97, 11–25. [Google Scholar] [CrossRef]
- Dong, Q.; Xing, K.; Zhang, H. Artificial neural network for assessment of energy consumption and cost for cross laminated timber office building in severe cold regions. Sustainability 2017, 10, 84. [Google Scholar] [CrossRef] [Green Version]
- Guo, H.; Liu, Y.; Meng, Y.; Huang, H.; Sun, C.; Shao, Y. A comparison of the energy saving and carbon reduction performance between reinforced concrete and cross-laminated timber structures in residential buildings in the severe cold region of China. Sustainability 2017, 9, 1426. [Google Scholar] [CrossRef] [Green Version]
- Maroušek, J.; Strunecký, O.; Stehel, V. Biochar farming: Defining economically perspective applications. Clean Technol. Environ. Policy 2019, 21, 1389–1395. [Google Scholar] [CrossRef]
- Maroušková, A.; Braun, P. Analysis of Czech Subsidies for Solid Biofuels. Int. J. Green Energy 2014, 12, 405–408. [Google Scholar]
- Khavari, A.M.; Pei, S.; Tabares-Velasco, P.C. Energy consumption analysis of multistory cross-laminated timber residential buildings: A comparative study. J. Arch. Eng. 2016, 22, 04016002. [Google Scholar] [CrossRef]
- Jowett, O. The thermal behaviour of cross-laminated timber construction and its resilience to summertime overheating. In Proceedings of the PLEA 2011-the 27th Conference on Passive and Low Energy Architecture, Louvain-la-Neuve, Belgium, 13–15 July 2011; pp. 339–344. [Google Scholar]
- Adekunle, T.O. Thermal comfort and heat stress in cross-laminated timber (CLT) school buildings during occupied and unoccupied periods in Summer. In Proceedings of the 10th Windsor Conference, London, UK, 12–15 April 2018; pp. 12–15. [Google Scholar]
- Adekunle, T.O.; Nikolopoulou, M. Thermal comfort, summertime temperatures and overheating in prefabricated timber housing. Build. Environ. 2016, 103, 21–35. [Google Scholar] [CrossRef]
- Wyss, S.; Fazio, P.; Rao, J.; Kayello, A. Investigation of Thermal Performance of Structural Insulated Panels for Northern Canada. J. Arch. Eng. 2015, 21, 04015006. [Google Scholar] [CrossRef]
- Vala, J. Computational identification of thermal technical properties of building materials and its reliability. AIP Conf. Proc. 2010, 1281, 2009–2012. [Google Scholar]
- Zach, J.; Korjenic, A.; Petránek, V.; Hroudová, J.; Bednar, T. Performance evaluation and research of alternative thermal insulations based on sheep wool. Energy Build. 2012, 49, 246–253. [Google Scholar] [CrossRef]
- Janczarek, M.; Bulyandra, O. Computer Modelling of Energy Saving Effects. Appl. Comput. Sci. 2016, 12, 47–60. [Google Scholar]
- Šťastnık, S.; Vala, J.; Kmınová, H. Identification of basic thermal technical characteristics of building materials. Kybernetika 2007, 43, 561–576. [Google Scholar]
- Albatici, R.; Passerini, F.; Tonelli, A.M.; Gialanella, S. Assessment of the thermal emissivity value of building materials using an infrared thermovision technique emissometer. Energy Build. 2013, 66, 33–40. [Google Scholar] [CrossRef]
Layer Name | Mass Density ρ (kg/m3) | Layer Thickness d (mm) | Thermal Resistance Rd (m2.K/W) | Thermal Conductivity Coefficient λd (W/(.m.K)) | Diffusion Resistance Factor μ (-) |
---|---|---|---|---|---|
Cross laminated timber | 470 | 100 | 0.909 | 0.11 | 40–70 |
PUR adhesive for thermal insulation boards | 15–25 | - | - | 0.035 | 28 |
Thermal insulation—EPS | 13.5–18 | 200 | 5.128 | 0.038 | 20–40 |
Construction adhesive | 1400 | 2.5 | 0.005 | 0.45 | 25 |
Plastering | 1200 | 2.5 | 0.005 | 0.5 | 25 |
Additional material (glass textile mesh, fixing elements for thermal insulation) |
Layer Name | Mass Density ρ (kg/m3) | Layer Thickness d (mm) | Thermal Resistance Rd (m2.K/W) | Thermal Conductivity Coefficient λd (W/(.m.K)) | Diffusion Resistance Factor μ (-) |
---|---|---|---|---|---|
Drywall | 750 | 12.5 | 0.057 | 0.15 | 9 |
OSB boards | 650 | 15 | 0.107 | 0.13 | 50 |
Thermal insulation—EPS | 13.5–18 | 140 | 3.59 | 0.038 | 20–40 |
OSB boards | 650 | 15 | 0.107 | 0.13 | 50 |
PUR adhesive for thermal insulation boards | 15–25 | - | - | 0.035 | 28 |
Thermal insulation—EPS | 13.5–18 | 100 | 2.564 | 0.038 | 20–40 |
Construction adhesive | 1400 | 2.5 | 0.005 | 0.45 | 25 |
Plastering | 1200 | 2.5 | 0.005 | 0.5 | 25 |
Additional material (glass textile mesh, fixing elements for thermal insulation) |
U Value (W/m2K) * | U Value (W/m2K) * | |
---|---|---|
Variant A | Variant B | |
average | 0.148 | 0.199 |
± std | 0.005 | 0.007 |
Min | 0.136 | 0.180 |
Max | 0.157 | 0.217 |
median | 0.151 | 0.198 |
25th perc. | 0.148 | 0.195 |
75th perc. | 0.151 | 0.202 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Švajlenka, J.; Kozlovská, M.; Vranay, F.; Pošiváková, T.; Jámborová, M. Comparison of Laboratory and Computational Models of Selected Thermal-Technical Properties of Constructions Systems Based on Wood. Energies 2020, 13, 3127. https://doi.org/10.3390/en13123127
Švajlenka J, Kozlovská M, Vranay F, Pošiváková T, Jámborová M. Comparison of Laboratory and Computational Models of Selected Thermal-Technical Properties of Constructions Systems Based on Wood. Energies. 2020; 13(12):3127. https://doi.org/10.3390/en13123127
Chicago/Turabian StyleŠvajlenka, Jozef, Mária Kozlovská, František Vranay, Terézia Pošiváková, and Miroslava Jámborová. 2020. "Comparison of Laboratory and Computational Models of Selected Thermal-Technical Properties of Constructions Systems Based on Wood" Energies 13, no. 12: 3127. https://doi.org/10.3390/en13123127
APA StyleŠvajlenka, J., Kozlovská, M., Vranay, F., Pošiváková, T., & Jámborová, M. (2020). Comparison of Laboratory and Computational Models of Selected Thermal-Technical Properties of Constructions Systems Based on Wood. Energies, 13(12), 3127. https://doi.org/10.3390/en13123127