Optimization under Uncertainty to Reduce the Cost of Energy for Parabolic Trough Solar Power Plants for Different Weather Conditions
Abstract
:1. Introduction
1.1. Solar Technologies
1.2. Role of Optimization and Uncertainties in Solar Power Systems
1.3. Motivation and Problem Formulation
2. The System Advisory Model and Problem Definition
3. Problem Definition and Decision Variables
- Solar multiple: The solar field aperture area required to generate the thermal energy needed to achieve the rated capacity. Thermal and optical losses are included in the capacity.
- Row spacing: The distance between rows of collectors in meters when the rows are placed uniformly throughout the solar field.
- Stow angle: The hour of stow collector angle. Northern latitude represents a zero stow angle and is vertical facing east, and a 90 degree angle is vertical facing west.
- Freeze protection temperature: This is the minimum temperature of the heat transfer fluid at which the freeze protection equipment is activated.
- Irradiation at design: The design point direct normal radiation value. The aperture area required to drive the power cycle at its design capacity and the design mass flowrate of the heat transfer fluid is calculated based using the value of irradiation
- Collector tilt: This is the angle from horizontal of all collectors in the field. It is assumed that all collectors are fixed at this angle. Closest to the equator, a positive value tilts the end of the array up; at the southern end, a negative value tilts it down.
3.1. Direct Capital Costs
- Site Improvements ($/m2)—This is the cost in dollars per meter square, which includes expenses related to site preparation and other equipment that are not included in the solar field cost category.
- Solar Field ($/m2)—This is the cost of solar field area in dollars per meter square, which includes expenses related to the installation of the solar field, labor, and equipment.
- HTF System ($/m2)—These are the expenses related to the installation of the heat transfer fluid pumps and piping, labor, and equipment expressed in dollars per square meter of the solar field area.
- Storage ($/kWht)—Storage capacity cost dollars per thermal megawatt hour, which includes expenses related to the installation of the thermal storage system, equipment, and labor.
- Power Plant ($/kWe)—Cost of power block gross capacity. This includes the installation of the power block, equipment, and labor.
3.2. Indirect Capital Costs
- EPC and Owner Costs—Costs associated with design and construction. Costs of land tax and insurance rates consider federal and state income tax rates, sales tax, insurance rate, inflation rate, and real discount rate.
4. The BONUS Algorithm
- Off-line Computations: Draw independently distributed samples j = 1, Nsamp for uncertain variables u and decision variables x. The distributions for the decision variables are assumed to be uniform distributions between the upper and lower bounds of the decision variables. Use these samples to generate the design prior density function using Kernel Density Estimation (KDE). Evaluate the objective function Z (and the probabilistic constraint) for each sample.
- On-line Computations:
- At each iteration, k, the decision variables (in the first iteration, the initial value of the decision variables is given) define a narrow normal distribution around this point and draw samples of from it. Use samples to generate the design distribution using KDE. Estimate the objective function and constraint (expected value E) using the following reweighting formula.
- Perturb the decision variable and use the reweighting scheme to estimate . Find the gradient and KKT conditions. If KKT conditions are satisfied, terminate and go to step 2c.
- SQP-based NLP: The Hessian approximation is calculated using a gradient using BFGS formula. Compute step for decision variables by solving a quadratic program (QP):
- Decrease the step if necessary to obtain a new iterate with
- Go to step 2a.
5. Results and Discussions
5.1. Computational Savings
5.2. Effect of Individual Decision Variables
6. Summary and Future Work
Author Contributions
Funding
Conflicts of Interest
References
- Fernández-García, A.; Zarza, E.; Valenzuela, L.; Pérez, M. Parabolic-trough solar collectors and their applications. Renew. Sustain. Energy Rev. 2010, 14, 1695–1721. [Google Scholar] [CrossRef]
- Poullikkas, A.; Kourtis, G.; Hadjipaschalis, I. Parametric analysis for the installation of solar dish technologies in Mediterranean regions. Renew. Sustain. Energy Rev. 2010, 14, 2772–2783. [Google Scholar] [CrossRef]
- Poullikkas, A.; Hadjipaschalis, I.; Kourtis, G. The cost of integration of parabolic trough CSP plants in isolated Mediterranean power systems. Renew. Sustain. Energy Rev. 2010, 14, 1469–1476. [Google Scholar] [CrossRef]
- Montes, M.J.; Abánades, A.; Martínez-Val, J.M. Performance of a direct steam generation solar thermal power plant for electricity production as a function of the solar multiple. Sol. Energy 2009, 83, 679–689. [Google Scholar] [CrossRef] [Green Version]
- Montes, M.J.; Abánades, A.; Martínez-Val, J.M.; Valdés, M. Solar multiple optimization for a solar-only thermal power plant, using oil as heat transfer fluid in the parabolic trough collectors. Sol. Energy 2009, 83, 2165–2176. [Google Scholar] [CrossRef] [Green Version]
- Desai, N.B.; Bandyopadhyay, S. Optimization of concentrating solar thermal power plant based on parabolic trough collector. J. Clean. Prod. 2015, 89, 262–271. [Google Scholar] [CrossRef]
- Odeh, S.D.; Morrison, G.L.; Behnia, M. Modelling of parabolic trough direct steam generation solar collectors. Sol. Energy 1998, 62, 395–406. [Google Scholar] [CrossRef]
- Post, A.D.; King, B.V.; Kisi, E.H. Computational model and optimisation of a vacuum diode thermionic generator for application in concentrating solar thermal power. Appl. Therm. Eng. 2017, 117, 245–253. [Google Scholar]
- Bishoyi, D.; Sudhakar, K. Modeling and performance simulation of 100 MW PTC based solar thermal power plant in Udaipur India. Case Stud. Therm. Eng. 2017, 10, 216–226. [Google Scholar]
- Ruegamer, T.; Kamp, H.; Kuckelkorn, T.; Schiel, W.; Weinrebe, G.; Nava, P.; Riffelmann, K.; Richert, T. Molten salt for parabolic trough applications: System simulation and scale effects. Energy Procedia 2014, 49, 1523–1532. [Google Scholar] [CrossRef] [Green Version]
- Lenert, A.; Wang, E.N. Optimization of nanofluid volumetric receivers for solar thermal energy conversion. Sol. Energy 2012, 86, 253–265. [Google Scholar] [CrossRef] [Green Version]
- Ramteen, S.; Denholm, P. The value of concentrating solar power and thermal energy storage. IEEE Trans. Sustain. Energy 2010, 1, 173–183. [Google Scholar]
- Avila-Marin, A.L.; Fernandez-Reche, J.; Tellez, F.M. Evaluation of the potential of central receiver solar power plants: Configuration, optimization and trends. Appl. Energy 2013, 112, 274–288. [Google Scholar] [CrossRef]
- Gur, M.; Epstein, M. A novel power block for CSP systems. Sol. Energy 2010, 84, 1761–1771. [Google Scholar]
- Sait, H.H.; Martinez-Val, J.M.; Abbas, R.; Munoz-Anton, J. Fresnel-based modular solar fields for performance/cost optimization in solar thermal power plants: A comparison with parabolic trough collectors. Appl. Energy 2015, 141, 175–189. [Google Scholar] [CrossRef] [Green Version]
- Desai, N.B.; Bandyopadhyay, S. Integration of parabolic trough and linear Fresnel collectors for optimum design of concentrating solar thermal power plant. Clean Technol. Environ. Policy 2015, 17, 1945–1961. [Google Scholar] [CrossRef]
- Boukelia, T.E.; Arslan, O.; Mecibah, M.S. ANN-based optimization of a parabolic trough solar thermal power plant. Appl. Therm. Eng. 2016, 107, 1210–1218. [Google Scholar] [CrossRef]
- Cabello, J.M.; Cejudo, J.M.; Luque, M.; Ruiz, F.; Deb, K.; Tewari, R. Optimization of the size of a solar thermal electricity plant by means of genetic algorithms. Renew. Energy 2011, 36, 3146–3153. [Google Scholar] [CrossRef]
- Dowling, A.; Zheng, T.; Zavala, V. Economic assessment of concentrated solar power technologies: A review. Renew. Sustain. Energy Rev. 2017, 72, 1019–1032. [Google Scholar] [CrossRef]
- Dominquez-Munoz, F.; Cejuda-Lopez, J.; Carrillo-Andres, A.; Ruiv, C. Design of solar thermal systems under uncertainty. Energy Build. 2012, 47, 474–484. [Google Scholar] [CrossRef]
- Jain, A.; Tuyet, V.; Mehta, R.; Mittala, S. Optimizing the Cost and Performance of Parabolic Trough Solar Plants with Thermal Energy Storage in India. Environ. Prog. Sustain. Energy 2013, 32, 824–829. [Google Scholar] [CrossRef]
- Meybodi, M.; Beath, A. Impact of cost uncertainties and solar data variations on the economics of central receiver solar power plants: An Australian case study. Renew. Energy 2016, 93, 510–524. [Google Scholar] [CrossRef]
- Hanel, M.; Escobar, R. Influence of solar energy resource assessment uncertainty in the levelized electricity cost of concentrated solar power plants in Chile. Renew. Energy 2013, 49, 96–100. [Google Scholar] [CrossRef]
- Ho, C.; Kolb, G. Incorporating Uncertainty into Probabilistic Performance Models of Concentrating Solar Power Plants. J. Sol. Energy Eng. 2010, 132, 031012. [Google Scholar] [CrossRef] [Green Version]
- Pousinho, H.M.I.; Contreras, J.; Pinson, P.; Mendes, V.M.F. Robust optimisation for self-scheduling and bidding strategies of hybrid CSP—Fossil power plants. Int. J. Electr. Power Energy Syst. 2015, 67, 639–650. [Google Scholar] [CrossRef]
- Poland, J.; Stadler, K. Stochastic Optimal Planning of Solar Thermal Power. In Proceedings of the 2014 IEEE Conference on Control Applications (CCA) Part of 2014 IEEE Multi-Conference on Systems and Control, Antibes, France, 8–10 October 2014. [Google Scholar]
- Dominguez, R.; Conejo, B. Optimal offering strategy for a concentrating solar power plant. Appl. Energy 2012, 98, 316–325. [Google Scholar] [CrossRef]
- Guédeza, R.; Spellinga, J.; Laumerta, B. Thermoeconomic Optimization of Solar Thermal Power Plants with Storage in High-Penetration Renewable Electricity Markets. Energy Procedia 2014, 57, 541–550. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Wang, J.; Zhang, Y.; Fan, Y.; Bao, G.; Wang, X. Multi-Period Generation Expansion Planning for Sustainable Power Systems to Maximize the Utilization of Renewable Energy Source. Sustainability 2020, 12, 1083. [Google Scholar] [CrossRef] [Green Version]
- Sahin, K.; Diwekar, U. Better Optimization of Nonlinear Uncertain Systems (BONUS): A New Algorithm for Stochastic Programming Using Reweighting through Kernel Density Estimation. Ann. Oper. Res. 2004, 132, 47–68. [Google Scholar] [CrossRef]
- SAM. Available online: https://sam.nrel.gov/sites/sam.nrel.gov/files/content/documents/pdf/sam-help.pdf (accessed on 16 June 2020).
- Mubarak, R.; Hofmann, M.; Riechelmann, S.; Seckmeyer, G. Comparison of modelled and measured tilted solar irradiance for photovoltaic applications. Energies 2017, 10, 1688. [Google Scholar] [CrossRef] [Green Version]
- Ceci1, M.; Corizzol, R.; Malerba, D.; Rashkovska, A. Spatial autocorrelation and entropy for renewable energy forecasting. Data Min. Knowl. Discov. 2019, 33, 698–729. [Google Scholar] [CrossRef]
- Diwekar, U.M. Introduction to Applied Optimization; Springer: New York, NY, USA, 2008. [Google Scholar]
- Diwekar, U.; David, A. BONUS Algorithm for Large Scale Stochastic Nonlinear Programing Problems; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Charnes, A.; Cooper, W.W. Chance-constrained programming. Manag. Sci. 1959, 5, 73–79. [Google Scholar] [CrossRef]
- Ozturk, U.; Mazumdar, M.; Norman, B. A solution to the stochastic unit commitment problem using chance constrained programming. IEEE Trans. Power Syst. 2004, 19, 1589–1598. [Google Scholar] [CrossRef]
- Wei, J.; Zhanga, Y.; Wanga, J.; Caob, X.; Khana, M.A. Multi-Period Planning of Multi-Energy Microgrid with Multi-Type Uncertainties Using Chance Constrained Information Gap Decision Method. Appl. Energy 2020, 260, 114188. [Google Scholar] [CrossRef]
- Chowdhury, N.; Pilo, F.; Pisano, G. Optimal Energy Storage System Positioning and Sizing with Robust Optimizatio. Energies 2020, 13, 512. [Google Scholar] [CrossRef] [Green Version]
- Birge, J.R.; Louveaux, F. Introduction to Stochastic Programming; Springer: New York, NY, USA, 1997. [Google Scholar]
- Ruszczynski, A. A regularized decomposition for minimizing a sum of polyhedral functions. Math. Program. 1986, 35, 309. [Google Scholar] [CrossRef]
- Rockafellar, R.T.; Wets, R.J.-B. Scenarios and policy aggregation in optimization under uncertainty. Math. Oper. Res. 1991, 16, 119. [Google Scholar] [CrossRef]
- Dantzig, G.B.; Infanger, G. Large scale stochastic linear programs—Importance sampling and Bender decomposition. In Computational and Applied Mathematics; Brezinski, C., Kulisch, U., Eds.; Stanford University: Stanford, CA, USA, 1991; pp. 111–120. [Google Scholar]
- Higle, J.L.; Sen, S. Stochastic decomposition: An algorithm for two-stage linear programs with recourse. Math. Oper. Res. 1991, 16, 650–669. [Google Scholar] [CrossRef]
- Diwekar, U.; Ulas, S. Sampling Techniques. In Kirk-Othmer Encyclopedia of 358 Chemical Technology, Online ed.; John and Wiley and Sons: Hoboken, NJ, USA, 2007; Volume 26, p. 998. [Google Scholar]
- Diwekar, U.M.; Kalagnanam, J.R. An efficient sampling technique for optimization under uncertainty. AIChE J. 1997, 43, 440. [Google Scholar] [CrossRef]
- Eia. Annual Energy Outlook 2015. Available online: https://www.eia.gov/outlooks/aeo/pdf/0383(2015).pdf (accessed on 16 June 2020).
- Eia. Annual Energy Outlook 2019. Available online: https://www.eia.gov/outlooks/aeo/pdf/aeo2019.pdf (accessed on 16 June 2020).
Parameter | Lower Bound | Upper Bound |
---|---|---|
Collector Tilt | 0 | 7 |
Freeze Protection Temp. | 140 | 180 |
Irradiation at Design | 800 | 1000 |
Row Spacing | 10 | 20 |
Solar Multiple | 1 | 3 |
Stow Angle | 150 | 180 |
Parameter | Mean (μ) | Std. dev. (σ) | Lower value (μ − 3σ) | Upper value (μ + 3σ) |
---|---|---|---|---|
HTF System Cost per meter square | 60 | 1.65 | 54 | 66 |
Land Cost per acre | 10,000 | 330 | 9000 | 11000 |
Power plant cost per Kwe | 1200 | 29.04 | 1080 | 1320 |
Site Improvement cost per meter square | 40 | 0.66 | 36 | 44 |
Solar field cost per meter square | 450 | 11.55 | 405 | 495 |
Storage system cost per kWht | 75 | 2.31 | 67.5 | 82.5 |
EPC Costs % direct | 11 | 0.495 | 9.9 | 12.1 |
Inflation Rate | 1 | 0.0825 | 0.9 | 1.1 |
Real Discount Rate | 2 | 0.1815 | 1.8 | 2.2 |
Federal income tax rate | 28 | 0.924 | 25.228 | 30.772 |
Insurance rate | 0.5 | 0.0165 | 0.4505 | 0.5495 |
Sales Tax | 5 | 0.165 | 4.505 | 5.495 |
State Income Tax | 5 | 0.231 | 4.5 | 5.5 |
Decision Variables | San Diego (Base Case) | Las Vegas (Optimal) | San Diego (Optimal) | Jacksonville (Optimal) | New York (Optimal) |
---|---|---|---|---|---|
Collector Tilt | 0 | 0.97883 | 0.91945 | 1.0382 | 0.77559 |
Freeze Protection Temp | 150 | 145 | 164.09 | 165 | 168.49 |
Irradiation @ Design | 950 | 830 | 829.94 | 830 | 840.08 |
Row Spacing | 15 | 17.001 | 17.63 | 16.818 | 15.886 |
Solar Multiple | 2 | 2.2341 | 2.3632 | 2.3841 | 3 |
Stow Angle | 170 | 162 | 162.58 | 162.01 | 161.9 |
Base Value, Deterministic, LCOE | 16.91 | 21.18 | 29.98 | 43.22 | |
Base case E(LCOE) | 16.91 | 21.144 | 29.97 | 43.21 | |
Optimal E(LCOE) | 9.947 | 12.19 | 15.69 | 23.1 | |
BONUS Optimal E(LCOE) | 9.155 | 11.106 | 14.89 | 21.5 | |
% savings | 41.17682 | 42.34771 | 47.64765 | 46.54015 | |
% difference bonus & actual | 7.9622 | 8.892535 | 5.098789 | 6.926407 |
Decision Variables/Optimal Cost | Las Vegas | San Diego | Jacksonville | New York |
---|---|---|---|---|
Collector tilt (deg) | 0.2694 | 0.2694 | 3.995 | 5.6287 |
Freeze protection temp (°C) | 154.707 | 154.707 | 170.82 | 157.266 |
Irradiation at design (W/m2) | 815.181 | 815.181 | 826.246 | 942.112 |
Row spacing (m) | 19.8304 | 19.8304 | 18.8608 | 12.752 |
Solar multiple | 2.8909 | 2.8909 | 1.1441 | 2.7076 |
Stow angle (deg) | 177.428 | 177.428 | 3.995 | 157.618 |
Avg. LCOE (cents/kWh) | 11.395 | 13.65 | 21.288 | 29.433 |
Value of Stochastic Solution(cents/kWh) | 1.448 | 2.544 | 5.538 | 6.333 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vaderobli, A.; Parikh, D.; Diwekar, U. Optimization under Uncertainty to Reduce the Cost of Energy for Parabolic Trough Solar Power Plants for Different Weather Conditions. Energies 2020, 13, 3131. https://doi.org/10.3390/en13123131
Vaderobli A, Parikh D, Diwekar U. Optimization under Uncertainty to Reduce the Cost of Energy for Parabolic Trough Solar Power Plants for Different Weather Conditions. Energies. 2020; 13(12):3131. https://doi.org/10.3390/en13123131
Chicago/Turabian StyleVaderobli, Adarsh, Dev Parikh, and Urmila Diwekar. 2020. "Optimization under Uncertainty to Reduce the Cost of Energy for Parabolic Trough Solar Power Plants for Different Weather Conditions" Energies 13, no. 12: 3131. https://doi.org/10.3390/en13123131
APA StyleVaderobli, A., Parikh, D., & Diwekar, U. (2020). Optimization under Uncertainty to Reduce the Cost of Energy for Parabolic Trough Solar Power Plants for Different Weather Conditions. Energies, 13(12), 3131. https://doi.org/10.3390/en13123131