Investigation of Inorganic Phase Change Material for a Semi-Transparent Photovoltaic (STPV) Module
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experimentation
3. Results and Discussion
3.1. Electrical Performance of STPV
3.2. Thermal Performance of STPV
4. Conclusions
- The integration of the PCM reduced the instantaneous peak PV temperature to 9 °C during summer compared to the reference STPV module;
- The conversion efficiency of the STPV-PCM was improved by 9.4% compared to the reference STPV module;
- The STPV-PCM output power production was increased by 12.16% compared to the reference STPV module;
- The instantaneous peak solar heat gain of the building through the DCG window was observed as 325 W, while the STPV-PCM and STPV windows were 70 W and 75 W, respectively.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kumar, N.M.; Yadav, S.K.; Chopra, S.S.; Bajpai, U.; Gupta, R.P.; Padmanaban, S.; Blaabjerg, F. Operational performance of on-grid solar photovoltaic system integrated into pre-fabricated portable cabin buildings in warm and temperate climates. Energy Sustain. Dev. 2020, 57, 109–118. [Google Scholar] [CrossRef]
- Reddy, K.P.; Gupta, M.V.N.; Nundy, S.; Karthick, A.; Ghosh, A. Status of BIPV and BAPV System for Less Energy-Hungry Building in India—A Review. Appl. Sci. 2020, 10, 2337. [Google Scholar] [CrossRef] [Green Version]
- Karthick, A.; Murugavel, K.K.; Kalaivani, L.; Saravana Babu, U. Performance study of building integrated photovoltaic modules. Adv. Build. Energy Res. 2018, 12, 178–194. [Google Scholar] [CrossRef]
- Naveen Chakkaravarthy, A.; Subathra, M.S.P.; Jerin Pradeep, P.; Manoj Kumar, N. Solar irradiance forecasting and energy optimization for achieving nearly net-zero energy building. J. Renew. Sustain. Energy 2018, 10, 035103. [Google Scholar] [CrossRef]
- Kumar, N.M.; Sudhakar, K.; Samykano, M. Performance comparison of BAPV and BIPV systems with c-Si, CIS and CdTe photovoltaic technologies under tropical weather conditions. Case Stud. Therm. Eng. 2019, 13, 100374. [Google Scholar] [CrossRef]
- Alrashidi, H.; Ghosh, A.; Issa, W.; Sellami, N.; Mallick, T.K.; Sundaram, S. Thermal performance of semi-transparent CdTe BIPV window at temperate climate. Sol. Energy 2020, 195, 536–543. [Google Scholar] [CrossRef]
- Ghosh, A.; Bhandari, S.; Sundaram, S.; Mallick, T.K. Carbon counter electrode mesoscopic ambient processed & characterised Perovskite for adaptive BIPV fenestration. Renew. Energy 2020, 145, 2151–2158. [Google Scholar]
- Roy, A.; Ghosh, A.; Bhandari, S.; Selvaraj, P.; Mallick, T.K.; Sundaram, S. Colour Comfort Evaluation of Dye Sensitized Solar Cells Glazing after Two Years of Ambient Exposure. J. Phys. Chem. C 2019, 123, 23834–23837. [Google Scholar] [CrossRef] [Green Version]
- Selvaraj, P.; Ghosh, A.; Mallick, T.K.; Sundaram, S. Investigation of semi- transparent dye-sensitized solar cells for fenestration integration. Renew. Energy 2019, 141, 516–525. [Google Scholar] [CrossRef]
- Ghosh, A.; Sundaram, S.; Mallick, T.K. Investigation of thermal and electrical performances of a combined semi-transparent PV-vacuum glazing. Appl. Energy 2018, 228, 1591–1600. [Google Scholar] [CrossRef]
- Ghosh, A.; Selvaraj, P.; Sundaram, S.; Mallick, T.K. The colour rendering index and correlated colour temperature of dye-sensitized solar cell for adaptive glazing application. Solar Energy 2018, 163, 537–544. [Google Scholar] [CrossRef]
- Karthick, A.; Murugavel, K.K.; Prabhakaran, D.S.R. Energy analysis of building integrated photovoltaic modules. In Proceedings of the 2017 International conference on power and embedded drive control (ICPEDC 2017), Chennai, India, 16–18 March 2017; pp. 307–311. [Google Scholar]
- Ramanan, P.; Murugavel, K.K.; Karthick, A. Performance analysis and energy metrics of grid-connected photovoltaic systems. Energy Sustain. Dev. 2019, 52, 104–115. [Google Scholar]
- Karthick, A.; Murugavel, K.K.; Sudalaiyandi, K.; Manokar, A.M. Building integrated photovoltaic modules and the integration of phase change materials for equatorial applications. Build. Serv. Eng. Res. Technol. 2019. [Google Scholar] [CrossRef]
- Alrashidi, H.; Issa, W.; Sellami, N.; Ghosh, A.; Mallick, T.K.; Sundaram, S. Performance assessment of cadmium telluride-based semi-transparent glazing for power saving in façade buildings. Energy Build. 2019, 109585. [Google Scholar] [CrossRef]
- Karthick, A.; Murugavel, K.K.; Kalaivani, L. Performance analysis of semi-transparent photovoltaic module for skylights. Energy 2018, 162, 798–812. [Google Scholar] [CrossRef]
- Ramanan, P.; Murugavel, K.K.; Karthick, A.; Sudhakar, K. Performance Evaluation of Building-Integrated Photovoltaic Systems for Residential Buildings in Southern India. Build. Serv. Eng. Res. Technol. 2020, 41, 492–506. [Google Scholar] [CrossRef]
- Sardarabadi, M.; Passandideh-Fard, M.; Maghrebi, M.J.; Ghazikhani, M. Experimental study of using both ZnO/water nanofluid and phase change material (PCM) in photovoltaic thermal systems. Sol. Energy Mater. Sol. Cells 2017, 161, 62–69. [Google Scholar] [CrossRef]
- Khanna, S.; Reddy, K.S.; Mallick, T.K. Optimization of solar photovoltaic system integrated with phase change material. Sol. Energy 2018, 163, 591–599. [Google Scholar] [CrossRef]
- Karthick, A.; Murugavel, K.K.; Ramanan, P. Performance enhancement of a building-integrated photovoltaic module using phase change material. Energy 2018, 142, 803–812. [Google Scholar] [CrossRef]
- Modjinou, M.; Ji, J.; Yuan, W.; Zhou, F.; Holliday, S.; Waqas, A.; Zhao, X. Performance comparison of encapsulated PCM PV/T, microchannel heat pipe PV/T and conventional PV/T systems. Energy 2019, 166, 1249–1266. [Google Scholar] [CrossRef]
- Al-Waeli, A.H.; Sopian, K.; Chaichan, M.T.; Kazem, H.A.; Ibrahim, A.; Mat, S.; Ruslan, M.H. Evaluation of the nanofluid and nano-PCM based photovoltaic thermal (PVT) system: An experimental study. Energy Convers. Manag. 2017, 151, 693–708. [Google Scholar] [CrossRef]
- Abdelrazik, A.S.; Al-Sulaiman, F.A.; Saidur, R. Numerical investigation of the effects of the nano-enhanced phase change materials on the thermal and electrical performance of hybrid PV/thermal systems. Energy Convers. Manag. 2020, 205, 112449. [Google Scholar] [CrossRef]
- Mahmoudi, T.; Wang, Y.; Hahn, Y.B. Graphene and its derivatives for solar cells application. Nano Energy 2018, 47, 51–65. [Google Scholar] [CrossRef]
- Rathod, P.B.; Nemade, K.R.; Waghuley, S.A. Improvement in photovoltaic performance of TiO2 nanoparticles by decoration of graphene nanosheets with spherical TiO2 nanoparticles. Mater. Lett. 2016, 169, 118–121. [Google Scholar] [CrossRef]
- Karthick, A.; Ramanan, P.; Ghosh, A.; Stalin, B.; Kumar, R.V.; Baranilingesan, I. Performance enhancement of copper indium diselenide photovoltaic module using inorganic phase change material. Asia-Pac J Chem Eng. 2020, e2480. [Google Scholar] [CrossRef]
- Singh, P.; Khanna, S.; Newar, S.; Sharma, V.; Reddy, K.S.; Mallick, T.K.; Khusainov, R. Solar Photovoltaic Panels with Finned Phase Change Material Heat Sinks. Energies 2020, 13, 2558. [Google Scholar] [CrossRef]
- Hasan, A.; McCormack, S.J.; Huang, M.J.; Norton, B. Energy and cost saving of a photovoltaic-phase change materials (PV-PCM) system through temperature regulation and performance enhancement of photovoltaics. Energies 2014, 7, 1318–1331. [Google Scholar] [CrossRef] [Green Version]
- Karthick, A.; Murugavel, K.K.; Ghosh, A.; Sudhakar, K.; Ramanan, P. Investigation of a binary eutectic mixture of phase change material for building integrated photovoltaic (BIPV) system. Sol. Energy Mater. Sol. Cells 2020, 207, 110360. [Google Scholar] [CrossRef]
- Kumar, P.M.; Mylsamy, K. Experimental investigation of solar water heater integrated with a nanocomposite phase change material. J. Therm. Anal. Calorim. 2019, 136, 121–132. [Google Scholar] [CrossRef]
- Kumar, P.M.; Mylsamy, K.; Saravanakumar, P.T. Experimental investigations on thermal properties of nano-SiO2/paraffin phase change material (PCM) for solar thermal energy storage applications. Energy Sources Part A Recovery Util. Environ. Eff. 2019, 1–14. [Google Scholar] [CrossRef]
- Kumar, P.M.; Anandkumar, R.; Sudarvizhi, D.; Prakash, K.B.; Mylsamy, K. Experimental investigations on thermal management and performance improvement of solar PV panel using a phase change material. AIPC 2019, 2128, 020023. [Google Scholar]
- Li, W.; Dong, Y.; Zhang, X.; Liu, X. Preparation and performance analysis of graphite additive/paraffin composite phase change materials. Processes 2019, 7, 447. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, A.; Norton, B.; Duffy, A. Measured thermal & daylight performance of an evacuated glazing using an outdoor test cell. Appl. Energy 2016, 177, 196–203. [Google Scholar]
- Ghosh, A.; Norton, B.; Duffy, A. Effect of sky clearness index on transmission of evacuated (vacuum) glazing. Renew. Energy 2017, 105, 160–166. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, A.; Sundaram, S.; Mallick, T.K. Colour properties and glazing factors evaluation of multicrystalline based semi-transparent Photovoltaic-vacuum glazing for BIPV application. Renew. Energy 2019, 131, 730–736. [Google Scholar] [CrossRef]
- Peng, J.; Curcij, D.C.; Thanachareonkit, A.; Lee, E.S.; Goudey, H.; Selkowitz, S.E. Study on the overall energy performance of a novel c-Si based semitransparent solar photovoltaic window. Appl. Energy 2019, 242, 854–872. [Google Scholar] [CrossRef]
- Yang, L.; Huang, J.; Zhou, F. Thermophysical properties and applications of nano-enhanced PCMs: An update review. Energy Convers. Manag. 2020, 214, 112876. [Google Scholar] [CrossRef]
- Ghosh, A.; Norton, B. Advances in switchable and highly insulating autonomous (self-powered) glazing systems for adaptive low energy buildings. Renew. Energy 2018, 126, 1003–1031. [Google Scholar] [CrossRef]
Particular | Specification |
---|---|
Phase change material | Sodium sulphate decahydrate (Na2SO4·10H2O) |
Melting point/Freezing point | 32 °C/4 °C |
Density in solid/Liquid | 1458 kg/m3/1485 kg/m3 |
Latent Heat | 251 kJ/kg |
Nanoparticles | Graphene oxide (C160H44O16) |
Parameter | STPV | STPV-PCM |
---|---|---|
Rated Power WP (W) | 24 | 24 |
Open circuit Voltage Voc (V) | 3.786 | 3.786 |
Short circuit Current Isc (A) | 8.72 | 8.72 |
Maximum voltage Vmax (V) | 3.18 | 3.18 |
Maximum current Imax (A) | 8.48 | 8.48 |
Number of Solar cells (Nos) | 6 | 6 |
PCM layer | − | Glauber salt and Graphene oxide |
Instrument | Range | Accuracy |
---|---|---|
Voltmeter (Meco make) | 30 V | ±1 V |
Ammeter (Meco make) | 0–10 A | ±0.1 A |
Electrical Rheostat load | 40-ohm, 2.5 A | ±0.1% |
K-type Thermocouple | 220 °C | ±1 °C |
Selec make temperature indicator | 0–500 °C | ±1 °C |
Pyranometer | 0–2000 W/m2 | ±1 W/m2 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karthick, A.; Manokar Athikesavan, M.; Pasupathi, M.K.; Manoj Kumar, N.; Chopra, S.S.; Ghosh, A. Investigation of Inorganic Phase Change Material for a Semi-Transparent Photovoltaic (STPV) Module. Energies 2020, 13, 3582. https://doi.org/10.3390/en13143582
Karthick A, Manokar Athikesavan M, Pasupathi MK, Manoj Kumar N, Chopra SS, Ghosh A. Investigation of Inorganic Phase Change Material for a Semi-Transparent Photovoltaic (STPV) Module. Energies. 2020; 13(14):3582. https://doi.org/10.3390/en13143582
Chicago/Turabian StyleKarthick, Alagar, Muthu Manokar Athikesavan, Manoj Kumar Pasupathi, Nallapaneni Manoj Kumar, Shauhrat S. Chopra, and Aritra Ghosh. 2020. "Investigation of Inorganic Phase Change Material for a Semi-Transparent Photovoltaic (STPV) Module" Energies 13, no. 14: 3582. https://doi.org/10.3390/en13143582
APA StyleKarthick, A., Manokar Athikesavan, M., Pasupathi, M. K., Manoj Kumar, N., Chopra, S. S., & Ghosh, A. (2020). Investigation of Inorganic Phase Change Material for a Semi-Transparent Photovoltaic (STPV) Module. Energies, 13(14), 3582. https://doi.org/10.3390/en13143582