Virtual Reality for Smart Urban Lighting Design: Review, Applications and Opportunities
Abstract
:1. Introduction
- the main outdoor urban areas;
- the objective and subjective criteria to consider in the lighting design of urban areas;
- the state-of-art in the use of virtual reality for outdoor lighting design;
- future opportunities and challenges for virtual reality in outdoor lighting design applications.
2. Smart Lighting for New Cities
2.1. Road Lighting
- choice of supporting method—for example, columns with or without brackets, suspension wires, or direct mounting on buildings;
- scale and height of lighting columns or other suspension elements in relation to the height of adjacent buildings, trees, and other salient objects in the field of view;
- mounting height of the luminaire;
- the lit appearance of the complete installation.
2.2. Green Area Lighting
- the position of luminaires;
- the mounting height of the luminaire;
- the choice of luminaire;
- the luminaire supporting pole.
2.3. Architectural Lighting
2.4. Objective and Subjective Parameters
3. Use of Virtual Reality for Lighting Design: State-of-Art
- calibrated 360° HDR images can be used to reproduce a correct light distribution;
- game engines can be used for correct reproduction of light distribution;
- HMDs are the best VR equipment for an exact perception of light distribution;
- game engines do not allow a direct evaluation of illuminance and luminance values;
- in VR a correct light distribution can provide an adequate level of space presence, lighting appearance and environment perception.
4. Future Opportunities for Virtual Reality in the Lighting Field
4.1. Scale and Height of Luminaire Supporting Method, Luminaire Supporting Method and Luminous Intensity Distribution
4.2. Directionality
4.3. Light Spectral Power Distribution and Emotional Aspects
4.4. Hierarchical Lighting Approach, Visual Orientation, Dark Shadows, and Recognition of Obstacles
4.5. Accessibility
4.6. See the Boundaries and Visibility (by Night)
4.7. Fog
4.8. Facial Recognition
4.9. Glare
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Laufs, J.; Borrion, H.; Bradford, B. Security and the smart city: A systematic review. Sustain. Cities Soc. 2020, 55, 102023. [Google Scholar] [CrossRef]
- Manville, C.; Cochrane, G.; Cave, J.; Millard, J.; Pederson, J.K.; Thaarup, R.K.; Liebe, A.; Wissner, M.; Massink, R.; Kotterink, B. Mapping Smart Cities in the EU; European Union: Brussels, Belgium, 2014. [Google Scholar]
- Praharaj, S.; Han, H. Cutting through the clutter of smart city definitions: A reading into the smart city perceptions in India. City Cult. Soc. 2019, 18, 100289. [Google Scholar] [CrossRef]
- Smart Cities|European Commission. Available online: https://ec.europa.eu/info/eu-regional-and-urban-development/topics/cities-and-urban-development/city-initiatives/smart-cities_en (accessed on 12 February 2020).
- Hollands, R.G. Will the real smart city please stand up? Intelligent, progressive or entrepreneurial? City 2008, 12, 303–320. [Google Scholar] [CrossRef]
- Nam, T.; Pardo, T.A. Smart city as urban innovation: Focusing on management, policy, and context. ACM Int. Conf. Proc. Ser. 2011, 185–194. [Google Scholar] [CrossRef]
- Silva, B.N.; Khan, M.; Han, K. Towards sustainable smart cities: A review of trends, architectures, components, and open challenges in smart cities. Sustain. Cities Soc. 2018, 38, 697–713. [Google Scholar] [CrossRef]
- Commision, E.; den Ouden, E.; Valkenburg, R.; Schreurs, M.A.; Aarts, E.; Commision, E.; den Ouden, E.; Valkenburg, R.; Schreurs, M.A.; Aarts, E. Open Innovation 2.0 Yearbook 2015. In Open Innovation 2.0 Yearbook 2015; European Union: Brussels, Belgium, 2015; pp. 83–94. ISBN 9789279439629. [Google Scholar]
- Brock, K.; den Ouden, E.; van der Klauw, K.; Podoynitsyna, K.; Langerak, F. Light the way for smart cities: Lessons from Philips Lighting. Technol. Forecast. Soc. Chang. 2019, 142, 194–209. [Google Scholar] [CrossRef]
- den Ouden, E.; Valkenburg, R. Real Projects for Real People. In Real Projects for Real People; The Patching Zone: Rotterdam, The Netherlands, 2015; Volume 3, pp. 151–157. ISBN 9789081705134. [Google Scholar]
- Rabaza, O.; Gómez-Lorente, D.; Pérez-Ocón, F.; Peña-García, A. A simple and accurate model for the design of public lighting with energy efficiency functions based on regression analysis. Energy 2016, 107, 831–842. [Google Scholar] [CrossRef]
- Ocana-Miguel, A.; Andres-Diaz, J.R.; Hermoso-Orzáez, M.J.; Gago-Calderón, A. Analysis of the viability of street light programming using commutation cycles in the power line. Sustainability 2018, 10, 4043. [Google Scholar] [CrossRef] [Green Version]
- Wojnicki, I.; Kotulski, L.; Sędziwy, A.; Ernst, S. Application of distributed graph transformations to automated generation of control patterns for intelligent lighting systems. J. Comput. Sci. 2017, 23, 20–30. [Google Scholar] [CrossRef]
- Ernst, S.; Łabuz, M.; Środa, K.; Kotulski, L. Graph-based spatial data processing and analysis for more efficient road lighting design. Sustainability 2018, 10, 3850. [Google Scholar] [CrossRef] [Green Version]
- Peña-García, A.; Gómez-Lorente, D.; Espín, A.; Rabaza, O. New rules of thumb maximizing energy efficiency in street lighting with discharge lamps: The general equations for lighting design. Eng. Optim. 2016, 48, 1080–1089. [Google Scholar] [CrossRef]
- Relux. Available online: https://relux.com/en/relux-desktop.html?gclid=EAIaIQobChMI8N3W-cmM6gIVA6gYCh1-_wU-EAAYASAAEgJMEvD_BwE (accessed on 19 June 2020).
- DIALux Evo. Available online: https://www.dial.de/en/dialux-desktop/download/dialux-evo-download/ (accessed on 27 February 2020).
- Niu, S.; Pan, W.; Zhao, Y. A virtual reality integrated design approach to improving occupancy information integrity for closing the building energy performance gap. Sustain. Cities Soc. 2016, 27, 275–286. [Google Scholar] [CrossRef]
- Maffei, L.; Masullo, M.; Pascale, A.; Ruggiero, G.; Romero, V.P. Immersive virtual reality in community planning: Acoustic and visual congruence of simulated vs real world. Sustain. Cities Soc. 2016, 27, 338–345. [Google Scholar] [CrossRef]
- Iachini, T.; Coello, Y.; Frassinetti, F.; Senese, V.P.; Galante, F.; Ruggiero, G. Peripersonal and interpersonal space in virtual and real environments: Effects of gender and age. J. Environ. Psychol. 2016, 45, 154–164. [Google Scholar] [CrossRef]
- Schubert, T.W. The sense of presence in virtual environments: A three-component scale measuring spatial presence, involvement, and realness. Z. für Medien. 2003, 15, 69–71. [Google Scholar] [CrossRef]
- Slater, M. Place illusion and plausibility can lead to realistic behaviour in immersive virtual environments. Philos. Trans. R. Soc. B Biol. Sci. 2009, 364, 3549–3557. [Google Scholar] [CrossRef] [Green Version]
- Burdea, G.; Coiffet, P. Virtual Reality Technology; J. Wiley-Interscience: New York, NY, USA, 2003; ISBN 0471360899. [Google Scholar]
- Iachini, T.; Maffei, L.; Masullo, M.; Senese, V.P.; Rapuano, M.; Pascale, A.; Sorrentino, F.; Ruggiero, G. The experience of virtual reality: Are individual differences in mental imagery associated with sense of presence? Cogn. Process. 2019, 20, 291–298. [Google Scholar] [CrossRef]
- Ruotolo, F.; Maffei, L.; Di Gabriele, M.; Iachini, T.; Masullo, M.; Ruggiero, G.; Senese, V.P. Immersive virtual reality and environmental noise assessment: An innovative audio-visual approach. Environ. Impact Assess. Rev. 2013, 41, 10–20. [Google Scholar] [CrossRef]
- Narasimha, S.; Dixon, E.; Bertrand, J.W.; Chalil Madathil, K. An empirical study to investigate the efficacy of collaborative immersive virtual reality systems for designing information architecture of software systems. Appl. Ergon. 2019, 80, 175–186. [Google Scholar] [CrossRef]
- Jiang, L.; Masullo, M.; Maffei, L.; Meng, F.; Vorländer, M. How do shared-street design and traffic restriction improve urban soundscape and human experience?—An online survey with virtual reality. Build. Environ. 2018, 143, 318–328. [Google Scholar] [CrossRef]
- Nasar, J.L.; Bokharaei, S. Lighting modes and their effects on impressions of public squares. J. Environ. Psychol. 2017, 49, 96–105. [Google Scholar] [CrossRef]
- Chung, W.K.; Chau, C.K.; Masullo, M.; Pascale, A. Modelling perceived oppressiveness and noise annoyance responses to window views of densely packed residential high-rise environments. Build. Environ. 2019, 157, 127–138. [Google Scholar] [CrossRef]
- Dunston, P.S.; Arns, L.L.; Mcglothlin, J.D.; Lasker, G.C.; Kushner, A.G. An Immersive Virtual Reality Mock-Up for Design Review of Hospital Patient Rooms. Collab. Des. Virtual Environ. 2011, 167–176. [Google Scholar] [CrossRef]
- Paes, D.; Arantes, E.; Irizarry, J. Immersive environment for improving the understanding of architectural 3D models: Comparing user spatial perception between immersive and traditional virtual reality systems. Autom. Constr. 2017, 84, 292–303. [Google Scholar] [CrossRef]
- Majumdar, T.; Fischer, M.A.; Schwegler, B.R. Conceptual design review with a virtual reality mock-up model. Engineering 2006, 2902–2911. [Google Scholar]
- Bosch-Sijtsema, P.M.; Haapamäki, J. Perceived enablers of 3D virtual environments for virtual team learning and innovation. Comput. Hum. Behav. 2014, 37, 395–401. [Google Scholar] [CrossRef]
- Duarte, E.; Rebelo, F.; Teles, J.; Wogalter, M.S. Behavioral compliance for dynamic versus static signs in an immersive virtual environment. Appl. Ergon. 2014, 45, 1367–1375. [Google Scholar] [CrossRef]
- Smith, J.W. Immersive virtual environment technology to supplement environmental perception, preference and behavior research: A review with applications. Int. J. Environ. Res. Public Health 2015, 12, 11486–11505. [Google Scholar] [CrossRef]
- Research DrEng Roland Greule, Z.; Greule, L. Psychological Effect of Lights in an Urban Environment; Zumtobel Research: Hamburg, Germany, 2017. [Google Scholar]
- Rahm, J.; Johansson, M. Assessing the pedestrian response to urban outdoor lighting: A full-scale laboratory study. PLoS ONE 2018, 13, e0204638. [Google Scholar] [CrossRef] [Green Version]
- UNI 11248:2016. Illuminazione Stradale—Selezione Delle Categorie Illuminotecniche; UNI Ente Nazionale Italiano di Unificazione Publisher: Milano, Italy, 2016. [Google Scholar]
- EN 13201-2:2015. Road Lighting—Part 2: Performance Requirements; Comite Europeen de Normalisation: Brussels, Belgium, 2015. [Google Scholar]
- EN 13201-3:2015. Road Lighting—Part 3: Calculation of Performance; Comite Europeen de Normalisation: Brussels, Belgium, 2015. [Google Scholar]
- Leccese, F.; Lista, D.; Salvadori, G.; Beccali, M.; Bonomolo, M. On the applicability of the space syntax methodology for the determination of street lighting classes. Energies 2020, 13, 1476. [Google Scholar] [CrossRef] [Green Version]
- CIE 115:2010. Lighting of Roads for Motor and Pedestrian Traffic; Commission Internationale de l’Éclairage: Vienna, Austria, 2010. [Google Scholar]
- Edquist, J.; Rudin-Brown, C.M.; Lenné, M.G. The effects of on-street parking and road environment visual complexity on travel speed and reaction time. Accid. Anal. Prev. 2012, 45, 759–765. [Google Scholar] [CrossRef] [PubMed]
- Fotios, S.; Gibbons, R. Road lighting research for drivers and pedestrians: The basis of luminance and illuminance recommendations. Light. Res. Technol. 2018, 50, 154–186. [Google Scholar] [CrossRef]
- Jackett, M.; Consulting, J.; Frith, W. How Does the Level of Road Lighting Affect Crashes in New Zealand—A Pilot Study; Opus International Consultants Central Laboratories: Lower Hutt, New Zealand, 2012. [Google Scholar]
- van Bommel, W.; van Bommel, W. Visual Performance for Motorists. In Road Lighting; Springer International Publishing: New York City, NY, USA, 2015; pp. 11–48. [Google Scholar]
- Bacelar, A. The contribution of vehicle lights in urban and peripheral urban environments. Light. Res. Technol. 2004, 36, 69–76. [Google Scholar] [CrossRef]
- Gibbons, R.B.; Edwards, C.; Williams, B.; Andersen, C.K. Informational Report on Lighting Design for Midblock Crosswalks; FHWa-HRt-08-053; Turner-Fairbank Highway Research Center: McLean, VA, USA, 2008; pp. 1–32. [Google Scholar]
- Edwards, C.J.; Gibbons, R.B. Relationship of Vertical Illuminance to Pedestrian Visibility in Crosswalks. Transp. Res. Rec. J. Transp. Res. Board 2008, 2056, 9–16. [Google Scholar] [CrossRef]
- Lin, Y.; Fotios, S. Investigating methods for measuring face recognition under lamps of different spectral power distribution. Light. Res. Technol. 2015, 47, 221–235. [Google Scholar] [CrossRef] [Green Version]
- Raynham, P.; Saksvikrønning, T. White light and facial recognition. Light. J. 2003, 68, 29–33. [Google Scholar]
- Peña-García, A.; Hurtado, A.; Aguilar-Luzón, M.C. Impact of public lighting on pedestrians’ perception of safety and well-being. Saf. Sci. 2015, 78, 142–148. [Google Scholar] [CrossRef]
- Fotios, S.; Yang, B.; Cheal, C. Effects of outdoor lighting on judgements of emotion and gaze direction. Light. Res. Technol. 2015, 47, 301–315. [Google Scholar] [CrossRef] [Green Version]
- Fotios, S.; Goodman, T. Proposed UK guidance for lighting in residential roads. Lighting Res. Technol. 2012, 44, 69–83. [Google Scholar]
- Davoudian, N.; Raynham, P. What do pedestrians look at at night? Light. Res. Technol. 2012, 44, 438–448. [Google Scholar] [CrossRef]
- Raynham, P. An examination of the fundamentals of road lighting for pedestrians and drivers. Light. Res. Technol. 2004, 36, 307–313. [Google Scholar] [CrossRef]
- Fotios, S.; Uttley, J.; Cheal, C.; Hara, N. Using eye-tracking to identify pedestrians’ critical visual tasks, Part 1. Dual task approach. Light. Res. Technol. 2015, 47, 133–148. [Google Scholar] [CrossRef] [Green Version]
- Fotios, S.; Cheal, C. Using obstacle detection to identify appropriate illuminances for lighting in residential roads. Light. Res. Technol. 2013, 45, 362–376. [Google Scholar] [CrossRef] [Green Version]
- Boyce, P.R.; Eklund, N.H.; Hamilton, B.J.; Bruno, L.D. Perceptions of safety at night in different lighting conditions. Light. Res. Technol. 2000, 32, 79–91. [Google Scholar] [CrossRef]
- Blöbaum, A.; Hunecke, M. Perceived Danger in Urban Public Space. Environ. Behav. 2005, 37, 465–486. [Google Scholar] [CrossRef]
- Vrij, A.; Winkel, F.W. Characteristics of the built environment and fear of crime: A research note on interventions in unsafe locations. Deviant Behav. 1991, 12, 203–215. [Google Scholar] [CrossRef]
- Boomsma, C.; Steg, L. Feeling Safe in the Dark: Examining the Effect of Entrapment, Lighting Levels, and Gender on Feelings of Safety and Lighting Policy Acceptability. Environ. Behav. 2014, 46, 193–212. [Google Scholar] [CrossRef]
- Li, F.; Chen, Y.; Liu, Y.; Chen, D. Comparative in situ study of LEDs and HPS in road lighting. LEUKOS J. Illum. Eng. Soc. N. Am. 2012, 8, 205–214. [Google Scholar]
- Knight, C. Field surveys of the effect of lamp spectrum on the perception of safety and comfort at night. Light. Res. Technol. 2010, 42, 313–329. [Google Scholar] [CrossRef]
- Van Bommel, W. Road Lighting: Fundamentals, Technology and Application; Springer International Publishing: New York City, NY, USA, 2015; ISBN 9783319114668. [Google Scholar]
- Boyce, P.R. Lighting for Driving: Roads, Vehicles, Signs, and Signals; CRC Press LLC: Boca Raton, FL, USA, 2008; ISBN 9781420008159. [Google Scholar]
- Ekrias, A.; Eloholma, M.; Halonen, L. Analysis of road lighting quantity and quality in varying weather conditions. LEUKOS J. Illum. Eng. Soc. N. Am. 2007, 4, 89–98. [Google Scholar] [CrossRef]
- Bozorg, S.; Tetri, E.; Kosonen, I.; Luttinen, T. The Effect of Dimmed Road Lighting and Car Headlights on Visibility in Varying Road Surface Conditions. LEUKOS J. Illum. Eng. Soc. N. Am. 2018, 14, 259–273. [Google Scholar] [CrossRef] [Green Version]
- Felnhofer, A.; Kothgassner, O.D.; Schmidt, M.; Heinzle, A.K.; Beutl, L.; Hlavacs, H.; Kryspin-Exner, I. Is virtual reality emotionally arousing? Investigating five emotion inducing virtual park scenarios. Int. J. Hum. Comput. Stud. 2015, 82, 48–56. [Google Scholar] [CrossRef]
- Yılmaz, S. Mumcu Sema Urban Green Areas and Design Principles. In Environmental Sustainability and Landscape Management; Efe, R., Cürebal, İ., Gad, A., Tóth, B., Kliment, S.T., Eds.; ST. Kliment Ohridski University Press Sofia: Sofia, Bulgaria, 2016; pp. 100–118. ISBN 978-954-07-4140-6. [Google Scholar]
- Thompson, C.W. Urban open space in the 21st century. Landsc. Urban Plan. 2002, 60, 59–72. [Google Scholar] [CrossRef]
- Kaźmierczak, A. The contribution of local parks to neighbourhood social ties. Landsc. Urban Plan. 2013, 109, 31–44. [Google Scholar] [CrossRef]
- Johansson, M.; Pedersen, E.; Maleetipwan-Mattsson, P.; Kuhn, L.; Laike, T. Perceived outdoor lighting quality (POLQ): A lighting assessment tool. J. Environ. Psychol. 2014, 39, 14–21. [Google Scholar] [CrossRef]
- Project for Public Spaces Lighting Use & Design. Available online: https://www.pps.org/article/streetlights (accessed on 25 March 2020).
- Halefoglu, L.; Jiang, X.; Kendrick, A.J.; Saunders, G.D.; Sciarrino, M.; Vizner, G.; Bailey, R. Smart lighting: Developing a smarter control mechanism for park trail lighting. In Proceedings of the 2016 IEEE Systems and Information Engineering Design Symposium (SIEDS), Charlottesville, VA, USA, 29 April 2016; pp. 277–282. [Google Scholar]
- Ngesan, M.R.; Karim, H.A.; Zubir, S.S.; Ahmad, P. Urban Community Perception on Nighttime Leisure Activities in Improving Public Park Design. Procedia Soc. Behav. Sci. 2013, 105, 619–631. [Google Scholar] [CrossRef] [Green Version]
- VV.AA. Outdoor Lighting Strategy; City of Vancouver: Vancouver, BC, Canada, 2019. [Google Scholar]
- Smith, B.; Hallo, J. Informing good lighting in parks through visitors’ perceptions and experiences. Int. J. Sustain. Light. 2019, 21, 47–65. [Google Scholar] [CrossRef]
- Zhang, R.; Piao, Y.-J.; Cao, L.-S.; Cho, T.-D. The Research on Lighting Design of Parks. J. Environ. Sci. Int. 2014, 23, 1013–1020. [Google Scholar] [CrossRef] [Green Version]
- Tabrizian, P.; Baran, P.K.; Smith, W.R.; Meentemeyer, R.K. Exploring perceived restoration potential of urban green enclosure through immersive virtual environments. J. Environ. Psychol. 2018, 55, 99–109. [Google Scholar] [CrossRef]
- Summer Night Lights—GRYD Foundation. Available online: https://grydfoundation.org/programs/summer-night-lights/ (accessed on 25 March 2020).
- IESNA (Illuminating Engineering Society of North America). Lighting Handbook, 9th ed.; REA, M., Ed.; IESNA: New York, NY, USA, 2000; ISBN 0879951508. [Google Scholar]
- Moyer, J.L. The Landscape Lighting Book, 3rd ed.; Wiley: Hoboken, NJ, USA, 1992; ISBN 978-1118073827. [Google Scholar]
- Ahmet, Ü. People’s Experience of Urban Lighting in Public Space. Master’s Thesis, Graduate School of Natural and Applied Sciences of Middle East Technical University, Ankara, Turkey, 2009. Available online: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.471.5748&rep=rep1&type=pdf (accessed on 25 March 2020).
- Lighting Design Tips for Parks and Recreation Areas. Available online: https://www.eaton.com/us/en-us/company/news-insights/lighting-resource/design/lighting-tips-for-parks-and-recreation-areas.html (accessed on 28 March 2020).
- Three Rivers Park Lighting Strategy. Available online: https://riverlifepgh.org/wp-content/uploads/2016/11/Three-Rivers-Park-Lighting-Strategy-Full-Version1.pdf (accessed on 28 March 2020).
- Lindh, U.W. Light Shapes Spaces: Experience of Distribution of Light and Visual Spatial Boundaries; Litorapid Media AB: Gothenburg, Sweden, 2012; ISBN 9789197999328. [Google Scholar]
- VV.AA. Public Lighting Strategy 2013 an Eco City 2 City of Melbourne/Public Lighting Strategy 2013 Contents; City of Melbourne: Melbourne, Australia, 2013. [Google Scholar]
- Johansson, M.; Rosén, M.; Küller, R. Individual factors influencing the assessment of the outdoor lighting of an urban footpath. Light. Res. Technol. 2011, 43, 31–43. [Google Scholar] [CrossRef]
- Dugar, A.M. Lighting urban parks—Reviewing the basics. Prof. Light. Des. 2011, 75, 40–42. [Google Scholar]
- Harnik, P.; Donahue, R.; Thaler, J. Safer parks after dark. Landsc. Archit. 2011, 101, 110–116. [Google Scholar]
- Kaya, B.; Kubat, A.S. Space and Fear of Crime Relation in Urban Green Areas Case Study. In Proceedings of the 6th International Space Syntax Symposium, Istanbul, Turkey, 12–15 June 2007; Space Syntax: Istambul, Turkey, 2007; pp. 1–6. [Google Scholar]
- Łopuszyńska, A.; Bartyna-Zielińska, M. Lighting of urban green areas—The case of Grabiszyn Park in Wrocław. Searching for the balance between light and darkness through social and technical issues. In E3S Web of Conferences; EDP Sciences: Paris, France, 2019; Volume 100, p. 00049. [Google Scholar]
- van Santen, C. The Illumination of Buildings. In Light Zone City; Birkhäuser Basel: Basel, Switzerland, 2006; ISBN 978-3-7643-7522-5. [Google Scholar]
- Neumann, D.; Champa, K.S. Architecture of the Night: The Illuminated Building; Prestel: München, Germany, 2002; ISBN 3791325876. [Google Scholar]
- Słomiński, S.; Krupiński, R. Luminance distribution projection method for reducing glare and solving object-floodlighting certification problems. Build. Environ. 2018, 134, 87–101. [Google Scholar] [CrossRef]
- Powerglass®. Available online: https://www.p2sg.de/en/about-us.html (accessed on 27 April 2020).
- Zumtobel. Light for Façades and Architecture. Available online: https://www.zumtobel.com/PDB/Ressource/teaser/en/au/AWB_Fassade_und_Architektur.pdf (accessed on 27 April 2020).
- Torre Agbar. Available online: http://www.jeannouvel.com/en/projects/tour-agbar/ (accessed on 27 April 2020).
- Laffi, R.; Sibilio, S.; Scorpio, M.; Ciampi, G.; Rosato, A.; Spanodimitriou, Y. The lighting refurbishment of places of worship: The case study of the Church of “Santa Maria di Piedigrotta”. Resourceedings 2019, 2, 102–112. [Google Scholar]
- EN 12464-2:2014. Light and Lighting—Lighting of Work Places—Part 2: Outdoor Work Places; Comite Europeen de Normalisation: Brussels, Belgium, 2014. [Google Scholar]
- CIE 094-1993. Guide for Floodlighting; Commission Internationale de l’Éclairage: Vienna, Austria, 1993. [Google Scholar]
- Pollard, N.E.; von Bommel, W.; Diaz Castro, D.; Lecocq, J.; Pong, B.J.; Walkling, A. CIE 150:2017: Guide on the Limitation of the Effects of Obtrusive Light from Outdoor Lighting Installations, 2nd ed.; Commission Internationale de l’Éclairage: Vienna, Austria, 2017. [Google Scholar]
- Skarżyński, K. The balance between visual effect and engineering correctness in architectural lighting. In Proceedings of the 29th CIE SESSION, Washington, DC, USA, 14–22 June 2019; CIE Central Bureau: Vienna, Austria, 2019; pp. 1802–1809. [Google Scholar]
- King, J. (Ed.) English Heritage External Lighting for Historic Buildings; Historic England: Swindon, England, UK, 2007. [Google Scholar]
- Żagan, W.; Krupiński, R. A study of the classical architecture floodlighting. Light Eng. 2017, 25, 57–64. [Google Scholar]
- Żagan, W.; Skarżyński, K. The “layered method”—A third method of floodlighting. Light. Res. Technol. 2019, 1–13. [Google Scholar] [CrossRef]
- Santa Croce façade. Available online: https://www.iguzzini.com/projects/project-gallery/dynamic-white-light-for-the-santa-croce-facade/ (accessed on 27 April 2020).
- Water Museum, St Petersburg, Russia. Available online: http://www.thornlighting.com/en/solutions/case-studies/urban-life/water-museum-st-petersburg-russia (accessed on 27 April 2020).
- Frankfurter Börse Luminale. 2008. Available online: https://en.wikipedia.org/wiki/File:Frankfurter_Börse_Luminale_2008.jpg#filehistory (accessed on 27 April 2020).
- DiLaura, D.L.; Houser, K.W.; Mistrick, R.; Steffy, S.G. The Lighting Handbook Reference and Application, 10th ed.; Illuminating Engineering Society of North America (IES): New York, NY, USA, 2011; p. 1328. [Google Scholar]
- The Voyage. Available online: https://www.iguzzini.com/projects/project-gallery/the-voyage/ (accessed on 27 April 2020).
- Han, H.; Lee, S.H.; Leem, Y. Modelling interaction decisions in smart cities: Why do we interact with smart media displays? Energies 2019, 12, 2840. [Google Scholar] [CrossRef] [Green Version]
- Matrix Office Park. Available online: https://www.iguzzini.com/projects/project-gallery/matrix-office-park/ (accessed on 27 April 2020).
- GreenPIX: Project. Available online: http://greenpix.sgp-a.com/project.php (accessed on 27 April 2020).
- Cauwert, C. Influence of Presentation Modes on Visual Perceptions of Daylit Spaces. Ph.D. Thesis, Université catholique de Louvain, Ottignies-Louvain-la-Neuve, Belgium, 2013. Available online: http://hdl.handle.net/2078.1/135934 (accessed on 28 March 2020).
- Newsham, G.R.; Cetegen, D.; Veitch, J.A.; Whitehead, L. Comparing lighting quality evaluations of real scenes with those from high dynamic range and conventional images. ACM Trans. Appl. Percept. 2010, 7, 1–26. [Google Scholar] [CrossRef]
- Chamilothori, K.; Wienold, J.; Andersen, M. Adequacy of Immersive Virtual Reality for the Perception of Daylit Spaces: Comparison of Real and Virtual Environments. LEUKOS J. Illum. Eng. Soc. N. Am. 2019, 15, 203–226. [Google Scholar] [CrossRef] [Green Version]
- Sanchez-Sepulveda, M.; Fonseca, D.; Franquesa, J.; Redondo, E. Virtual interactive innovations applied for digital urban transformations. Mixed approach. Future Gener. Comput. Syst. 2019, 91, 371–381. [Google Scholar] [CrossRef]
- Basturk, S.; Maffei, L.; Perea Perez, F.; Ranea Palma, A. Multisensory evaluation to support urban decision making. Int. Semin. Virtual Acoust. 2011, 2011, 114–121. [Google Scholar]
- Deb, S.; Carruth, D.W.; Sween, R.; Strawderman, L.; Garrison, T.M. Efficacy of virtual reality in pedestrian safety research. Appl. Ergon. 2017, 65, 449–460. [Google Scholar] [CrossRef] [PubMed]
- Natapov, A.; Fisher-Gewirtzman, D. Visibility of urban activities and pedestrian routes: An experiment in a virtual environment. Comput. Environ. Urban Syst. 2016, 58, 60–70. [Google Scholar] [CrossRef]
- Rockcastle, S.; Chamilothori, K.; Andersen, M. An Experiment in Virtual Reality to Measure Daylight-Driven Interest in Rendered Architectural Scenes. Build. Simul. 2017, 2577–2586. [Google Scholar] [CrossRef]
- Chamilothori, K.; Chinazzo, G.; Rodrigues, J.; Dan-Glauser, E.S.S.; Wienold, J.; Andersen, M. Subjective and physiological responses to façade and sunlight pattern geometry in virtual reality. Build. Environ. 2019, 150, 144–155. [Google Scholar] [CrossRef]
- Abd-Alhamid, F.; Kent, M.; Bennett, C.; Calautit, J.; Wu, Y. Developing an Innovative Method for Visual Perception Evaluation in a Physical-Based Virtual Environment. Build. Environ. 2019, 162, 106278. [Google Scholar] [CrossRef]
- Heydarian, A.; Pantazis, E.; Wang, A.; Gerber, D.; Becerik-Gerber, B. Towards user centered building design: Identifying end-user lighting preferences via immersive virtual environments. Autom. Constr. 2017, 81, 56–66. [Google Scholar] [CrossRef]
- Heydarian, A.; Carneiro, J.P.; Gerber, D.; Becerik-Gerber, B. Immersive virtual environments, understanding the impact of design features and occupant choice upon lighting for building performance. Build. Environ. 2015, 89, 217–228. [Google Scholar] [CrossRef]
- Masullo, M.; Maffei, L.; Pascale, A. Effects of combination of water sounds and visual elements on the traffic noise mitigation in urban green parks. In INTER-NOISE and NOISE-CON Congress and Conference Proceedings; Institute of Noise Control Engineering: Reston, VA, USA, 2016; pp. 1771–1776. [Google Scholar]
- Senese, V.P.; Pascale, A.; Maffei, L.; Cioffi, F.; Sergi, I.; Gnisci, A.; Masullo, M. The Influence of Personality Traits on the Measure of Restorativeness in an Urban Park: A Multisensory Immersive Virtual Reality Study. In Smart Innovation, Systems and Technologies; Springer Science and Business Media Deutschland GmbH: Berlin, Germany, 2020; Volume 151, pp. 347–357. [Google Scholar]
- Unreal Engine. Available online: https://www.unrealengine.com/en-US/vr (accessed on 20 May 2020).
- Boyce, P.R.; Fotios, S.; Richards, M. Road lighting and energy saving. Light. Res. Technol. 2009, 41, 245–260. [Google Scholar] [CrossRef]
- Jägerbrand, A.K. LED (Light-Emitting Diode) road lighting in practice: An evaluation of compliance with regulations and improvements for further energy savings. Energies 2016, 9, 357. [Google Scholar] [CrossRef] [Green Version]
- Wojnicki, I.; Kotulski, L. Improving control efficiency of dynamic street lighting by utilizing the dual graph grammar concept. Energies 2018, 11, 2840. [Google Scholar] [CrossRef] [Green Version]
- Wojnicki, I.; Komnata, K.; Kotulski, L. Comparative study of road lighting efficiency in the context of CEN/TR 13201 2004 and 2014 lighting standards and dynamic control. Energies 2019, 12, 1524. [Google Scholar] [CrossRef] [Green Version]
- Wojnicki, I.; Ernst, S.; Kotulski, L. Economic impact of intelligent dynamic control in urban outdoor lighting. Energies 2016, 9, 314. [Google Scholar] [CrossRef] [Green Version]
- Sȩdziwy, A.; Kotulski, L. Towards highly energy-efficient roadway lighting. Energies 2016, 9, 263. [Google Scholar] [CrossRef]
- Dong, M.; Fotios, S.; Lin, Y. The influence of luminance, observation duration and procedure on the recognition of pedestrians faces. Light. Res. Technol. 2015, 47, 693–704. [Google Scholar] [CrossRef] [Green Version]
- Fotios, S.; Castleton, H.; Cheal, C.; Yang, B. Investigating the chromatic contribution to recognition of facial expression. Light. Res. Technol. 2017, 49, 243–258. [Google Scholar] [CrossRef] [Green Version]
- Carlucci, S.; Causone, F.; De Rosa, F.; Pagliano, L. A review of indices for assessing visual comfort with a view to their use in optimization processes to support building integrated design. Renew. Sustain. Energy Rev. 2015, 47, 1016–1033. [Google Scholar] [CrossRef] [Green Version]
- Roskam, S.J. Brightness Perception and the Effect of Synthetic Glare in Virtual Lighting Applications. Master’s Thesis, Eindhoven University of Technology, Eindhoven, The Netherlands, 2015. Available online: https://research.tue.nl/en/studentTheses/brightness-perception-and-the-effect-of-synthetic-glare-in-virtua (accessed on 28 March 2020).
- Natephra, W.; Motamedi, A.; Fukuda, T.; Yabuki, N. Integrating building information modeling and virtual reality development engines for building indoor lighting design. Vis. Eng. 2017, 5, 1–21. [Google Scholar] [CrossRef] [Green Version]
Road lighting Design Criteria | Green Area Lighting Design Criteria | Architectural Lighting Design Criteria |
---|---|---|
Illuminance level | Illuminance level | |
Illuminance uniformity | Illuminance uniformity | |
Luminance level | Luminance level | |
Luminance uniformity | ||
Glare | Glare | |
Traffic intensity | ||
Presence of parked vehicles | ||
Vertical illuminance (Pedestrian road crossing) | ||
Facial recognition | ||
Colour rendering index | ||
Correlated colour temperature | Correlated colour temperature | Correlated colour temperature |
Spectra power distribution | ||
Recognition of obstacles | ||
Orientation | Orientation | |
Sense of safety | Sense of safety | |
Rain | ||
Snow | ||
Fog | ||
Luminaire supporting method | Luminaire supporting method | |
Scale and height of luminaire supporting method | ||
Choice of luminaire | Choice of luminaire | |
Mounting height of the luminaire | Mounting height of the luminaire | |
Lit appearance of the complete installation | ||
Position of luminaires | Position of luminaires | Position of luminaires |
Hierarchical lighting approach | ||
Accessibility | ||
Avoid dark shadows | ||
Visibility | ||
See the boundaries | ||
Directionality | ||
Luminous intensity distribution | ||
Emotional aspects | ||
Communication |
Lighting Design Criteria | References | Note |
---|---|---|
Illuminance level | [28,36,62,119] | Qualitatively evaluation |
Illuminance uniformity | [28] | Qualitatively evaluation |
Vertical illuminance (Pedestrian road crossing) | [121] | Daytime |
Correlated colour temperature | [119,120] | |
Rain | [69] | |
Choice of luminaire | [119,120] | |
Mounting height of the luminaire | [40] | |
Lit appearance of the complete installation | [40] | |
Sense of safety | [28,62,69,80] | |
Position of luminaires | [28,36,120] | |
Visibility | [122] | Daytime |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scorpio, M.; Laffi, R.; Masullo, M.; Ciampi, G.; Rosato, A.; Maffei, L.; Sibilio, S. Virtual Reality for Smart Urban Lighting Design: Review, Applications and Opportunities. Energies 2020, 13, 3809. https://doi.org/10.3390/en13153809
Scorpio M, Laffi R, Masullo M, Ciampi G, Rosato A, Maffei L, Sibilio S. Virtual Reality for Smart Urban Lighting Design: Review, Applications and Opportunities. Energies. 2020; 13(15):3809. https://doi.org/10.3390/en13153809
Chicago/Turabian StyleScorpio, Michelangelo, Roberta Laffi, Massimiliano Masullo, Giovanni Ciampi, Antonio Rosato, Luigi Maffei, and Sergio Sibilio. 2020. "Virtual Reality for Smart Urban Lighting Design: Review, Applications and Opportunities" Energies 13, no. 15: 3809. https://doi.org/10.3390/en13153809
APA StyleScorpio, M., Laffi, R., Masullo, M., Ciampi, G., Rosato, A., Maffei, L., & Sibilio, S. (2020). Virtual Reality for Smart Urban Lighting Design: Review, Applications and Opportunities. Energies, 13(15), 3809. https://doi.org/10.3390/en13153809