Distributed Generators Optimization Based on Multi-Objective Functions Using Manta Rays Foraging Optimization Algorithm (MRFO)
Abstract
:1. Introduction
2. Manta Ray Foraging Strategies
2.1. Chain Feeding
2.2. Cyclone Feeding
2.3. Somersault Feeding
3. Problem Formulation
3.1. Backward Forward Sweep Power Flow Method
3.2. Power Loss Calculation
3.3. Objective Function
3.3.1. Minimization of Total Active Power Loss
3.3.2. Minimization of Voltage Deviation
3.3.3. Maximization of the Voltage Stability Index
3.3.4. The Overall Objective Function
3.4. Operational Constraints
3.4.1. Equality Constraints
3.4.2. Inequality Constraints
4. Mathematical Model of MRFO
4.1. Chain Foraging
4.2. Cyclone Foraging
4.3. Somersault Foraging
4.4. General Procedures of the MRFO Approach
- 1 -
- Formulating the optimization problem and determining boundary limits.
- 2 -
- Inserting control parameters, number of iterations (Tmax), number of populations (Npop), and somersault factor (S).
- 3 -
- Initially positioning individuals randomly and calculating the fitness of each to determine the best solution so far.
- 4 -
- Starting the main loop for i = 1: Npop, If the stop criteria is not satisfied.
- 5 -
- If Rand is >0.5, then apply cyclone foraging.
- If t/ Tmax is < Rand, then update location using Equations (31)
- Else update location using Equation (28)
- End if
- 6 -
- Else (if Rand is <0.5) apply chain foraging.
- Update location using Equation (25)
- End if
- 7 -
- Evaluating the fitness value of each individual and updating position according to the best position.
- 8 -
- Then, update location using somersault foraging Equation (32)
5. Results and Discussion
5.1. IEEE 33-Bus System
- Three DG units operating at a unity power factor
- Three DG units operating at 0.95 power factor
- Three DG units operating at 0.866 power factor
- Three DG units operating at an optimum power factor
- Comparing results for different power factors
5.1.1. Three DG Units at Unity Power Factor
5.1.2. Three DG Units at 0.95 Power Factor
5.1.3. Three DG Units at 0.866 Power Factor
5.1.4. Three DG Units at Optimum Power Factor
5.1.5. Comparing Results Obtained for Different Power Factors
5.2. IEEE 69-Bus System
- Three DG units operating at a unity power factor
- Three DG units operating at 0.95 power factor
- Three DG units operating at 0.82 power factor
- Three DG units operating at an optimum power factor
- Comparing results for different power factors
5.2.1. Three DG Units at Unity Power Factor
5.2.2. Three DG Units at 0.95 Power Factor
5.2.3. Three DG Units at 0.82 Power Factor
5.2.4. Three DG Units at Optimum Power Factor
6. Conclusions and Future Work
Author Contributions
Funding
Conflicts of Interest
References
- Twaha, S.; Ramli, M.A.M. A review of optimization approaches for hybrid distributed energy generation systems: Off-grid and grid-connected systems. Sustain. Cities Soc. 2018, 41, 320–331. [Google Scholar] [CrossRef]
- Mehigan, L.; Deane, J.; Gallachóir, B.; Bertsch, V. A review of the role of distributed generation (DG) in future electricity systems. Energy 2018, 163, 822–836. [Google Scholar] [CrossRef]
- Singh, A.; Parida, S. A review on distributed generation allocation and planning in deregulated electricity market. Renew. Sustain. Energy Rev. 2018, 82, 4132–4141. [Google Scholar] [CrossRef]
- Muruganantham, B.; Gnanadass, R.; Padhy, N.P. Challenges with renewable energy sources and storage in practical distribution systems. Renew. Sustain. Energy Rev. 2017, 73, 125–134. [Google Scholar] [CrossRef]
- Evangelopoulos, V.A.; Georgilakis, P.S.; Hatziargyriou, N.D. Optimal operation of smart distribution networks: A review of models, methods and future research. Electr. Power Syst. Res. 2016, 140, 95–106. [Google Scholar] [CrossRef]
- Sampangi, K.S. A review on optimal allocation and sizing techniques for DG in distribution systems. Int. J. Renew. Energy Res. (IJRER) 2018, 8, 1236–1256. [Google Scholar]
- Georgilakis, P.S.; Hatziargyriou, N.D. Optimal distributed generation placement in power distribution networks: Models, methods, and future research. IEEE Trans. Power Syst. 2013, 28, 3420–3428. [Google Scholar] [CrossRef]
- Ansari, M.M.; Guo, C.; Shaikh, M.S.; Jatoi, M.A.; Yang, C.; Zhang, J. A Review of Technical Methods for Distributed Systems with Distributed Generation (DG). In Proceedings of the 2019 2nd International Conference on Computing, Mathematics and Engineering Technologies (iCoMET), Sukkur, Sindh, Pakistan, 30–31 January 2019; pp. 1–7. [Google Scholar]
- Acharya, P.S. Intelligent algorithmic multi-objective optimization for renewable energy system generation and integration problems: A review. Int. J. Renew. Energy Res. (IJRER) 2019, 9, 271–280. [Google Scholar]
- Alkhalaf, S.; Senjyu, T.; Saleh, A.A.; Hemeida, A.M.; Mohamed, A.-A.A. A MODA and MODE comparison for optimal allocation of distributed generations with different load levels. Sustainability 2019, 11, 5323. [Google Scholar] [CrossRef] [Green Version]
- Alsadi, S.; Khatib, T. Photovoltaic power systems optimization research status: A review of criteria, constrains, models, techniques, and software tools. Appl. Sci. 2018, 8, 1761. [Google Scholar] [CrossRef] [Green Version]
- Ming, M.; Wang, R.; Zha, Y.; Zhang, T. Multi-objective optimization of hybrid renewable energy system using an enhanced multi-objective evolutionary algorithm. Energies 2017, 10, 674. [Google Scholar]
- Khaled, U.; Eltamaly, A.M.; Beroual, A. Optimal power flow using particle swarm optimization of renewable hybrid distributed generation. Energies 2017, 10, 1013. [Google Scholar] [CrossRef] [Green Version]
- Mohamed, A.-A.; Ali, S.; Alkhalaf, S.; Senjyu, T.; Hemeida, A.M. Optimal Allocation of Hybrid Renewable Energy System by Multi-Objective Water Cycle Algorithm. Sustainability 2019, 11, 6550. [Google Scholar] [CrossRef] [Green Version]
- Yang, B.; Guo, Y.; Xiao, X.; Tian, P. Bi-level Capacity Planning of Wind-PV-Battery Hybrid Generation System Considering Return on Investment. Energies 2020, 13, 3046. [Google Scholar] [CrossRef]
- Kumar, M.; Nallagownden, P.; Elamvazuthi, I. Optimal placement and sizing of renewable distributed generations and capacitor banks into radial distribution systems. Energies 2017, 10, 811. [Google Scholar] [CrossRef] [Green Version]
- Hemeida, A.; El-Ahmar, M.; El-Sayed, A.; Hasanien, H.M.; Alkhalaf, S.; Esmail, M.; Senjyu, T. Optimum design of hybrid wind/PV energy system for remote area. Ain Shams Eng. J. 2020, 11, 11–23. [Google Scholar] [CrossRef]
- Susowake, Y.; Masrur, H.; Yabiku, T.; Senjyu, T.; Howlader, A.M.; Abdel-Akher, M.; Hemeida, A.M. A multi-objective optimization approach towards a proposed smart apartment with demand-response in Japan. Energies 2019, 13, 127. [Google Scholar] [CrossRef] [Green Version]
- Gamil, M.M.; Sugimura, M.; Nakadomari, A.; Senjyu, T.; Howlader, H.O.R.; Takahashi, H.; Hemeida, A.M. Optimal Sizing of a Real Remote Japanese Microgrid with Sea Water Electrolysis Plant Under Time-Based Demand Response Programs. Energies 2020, 13, 3666. [Google Scholar] [CrossRef]
- Howlader, H.; Adewuyi, O.B.; Hong, Y.-Y.; Mandal, P.; Hemeida, A.M.; Senjyu, T. Energy Storage System Analysis Review for Optimal Unit Commitment. Energies 2019, 13, 158. [Google Scholar] [CrossRef] [Green Version]
- Saleh, A.A.; Mohamed, A.-A.A.; Hemeida, A.M. Optimal Allocation of Distributed Generations and Capacitor Using Multi-Objective Different Optimization Techniques. In Proceedings of the 2019 International Conference on Innovative Trends in Computer Engineering (ITCE), Aswan, Egypt, 2–4 February 2019; pp. 377–383. [Google Scholar]
- Mohamadi, M.R.; Abedini, M.; Rashidi, B. An adaptive multi-objective optimization method for optimum design of distribution networks. Eng. Optim. 2019, 52, 194–217. [Google Scholar] [CrossRef]
- Aranizadeh, A.; Niazazari, I.; Mirmozaffari, M. A novel optimal distributed generation planning in distribution network using cuckoo optimization algorithm. Eur. J. Electr. Eng. Comput. Sci. 2019, 3, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Musa, A.; Maledo, E.D. Review of Metaheuristic Optimization Methods for Optimal Location and Sizing of Distributed Generation. J. Eng. Res. Appl. 2019, 9, 57–65. [Google Scholar]
- Trivedi, G.; Markana, A.; Bhatt, P.; Patel, V. Optimal Sizing and Placement of Multiple Distributed Generators using Teaching Learning Based Optimization Algorithm in Radial Distributed Network. In Proceedings of the 2019 6th International Conference on Control, Decision and Information Technologies (CoDIT), Paris, France, 23–26 April 2019; pp. 958–963. [Google Scholar]
- Saleh, A.A.; Mohamed, A.-A.A.; Hemeida, A.M.; Ibrahim, A.A. Comparison of Different Optimization Techniques for Optimal Allocation of Multiple Distribution Generation. In Proceedings of the 2018 International Conference on Innovative Trends in Computer Engineering (ITCE), Aswan, Egypt, 19–21 February 2018; pp. 317–323. [Google Scholar]
- Jegadeesan, M.; Babulal, C.K.; Subathra, V. Simultaneous Placement of Multi-DG and Capacitor in Distribution System Using Hybrid Optimization Method. In Proceedings of the 2017 International Conference on Innovations in Green Energy and Healthcare Technologies (IGEHT), Coimbatore, India, 16–18 March 2017; pp. 1–7. [Google Scholar]
- Ton, T.N.; Nguyen, T.T.; Truong, A.V.; Vu, T.P. Optimal Location and Size of Distributed Generators in an Elecric Distribution System based on a Novel Metaheuristic Algorithm. Eng. Technol. Appl. Sci. Res. 2020, 10, 5325–5329. [Google Scholar]
- Ang, S.; Leeton, U. Optimal Placement and Size of Distributed Generation in Radial Distribution System Using Whale Optimization Algorithm. Suranaree J. Sci. Technol. 2019, 26, 1–12. [Google Scholar]
- Maurya, H.; Bohra, V.K.; Pal, N.S.; Bhadoria, V.S. Effect of Inertia Weight of PSO on Optimal Placement of DG. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2019; Volume 594, p. 012011. [Google Scholar] [CrossRef]
- Kashyap, M.; Mittal, A.; Kansal, S. Optimal Placement of Distributed Generation Using Genetic Algorithm Approach. In Proceeding of the Second International Conference on Microelectronics, Computing & Communication Systems (MCCS 2017); Springer: Singapore, 2019; pp. 587–597. [Google Scholar]
- Nguyen, T.P.; Tran, T.T.; Vo, D.N. Improved stochastic fractal search algorithm with chaos for optimal determination of location, size, and quantity of distributed generators in distribution systems. Neural Comput. Appl. 2018, 31, 7707–7732. [Google Scholar] [CrossRef]
- Mohamed, A.-A.A.; Ali, S.M.; Hemeida, A.; Ibrahim, A.A. Optimal Placement of Distributed Energy Resources Including Different Load Models Using Different Optimization Techniques. In Proceedings of the 2019 International Conference on Innovative Trends in Computer Engineering (ITCE), Aswan, Egypt, 2–4 February 2019; pp. 389–395. [Google Scholar]
- Abdelaziz, M.; Moradzadeh, M. Monte-Carlo simulation based multi-objective optimum allocation of renewable distributed generation using OpenCL. Electr. Power Syst. Res. 2019, 170, 81–91. [Google Scholar] [CrossRef]
- Arulraj, R.; Kumarappan, N. A novel multi-objective hybrid WIPSO-GSA algorithm-based optimal DG and capacitor planning for techno-economic benefits in radial distribution system. Int. J. Energy Sect. Manag. 2019, 13, 98–127. [Google Scholar]
- Abass, Y.; Abido, M.; Al-Muhaini, M.; Khalid, M. Multi-Objective Optimal DG Sizing and Placement in Distribution Systems Using Particle Swarm Optimization. In Proceedings of the 2019 IEEE Innovative Smart Grid Technologies-Asia (ISGT Asia), Chengdu, China, 21–24 May 2019; pp. 1857–1861. [Google Scholar]
- Agajie, T.F.; Salau, A.O.; Hailu, E.A.; Sood, M.; Jain, S. Optimal Sizing and Siting of Distributed Generators for Minimization of Power Losses and Voltage Deviation. In Proceedings of the 2019 5th International Conference on Signal Processing, Computing and Control (ISPCC), Solan, India, 10–12 October 2019; pp. 292–297. [Google Scholar]
- Mustaffa, S.S.; Musirin, I.; Zamani, M.M.; Othman, M. Pareto optimal approach in Multi-Objective Chaotic Mutation Immune Evolutionary Programming (MOCMIEP) for optimal Distributed Generation Photovoltaic (DGPV) integration in power system. Ain Shams Eng. J. 2019, 10, 745–754. [Google Scholar] [CrossRef]
- Liu, W.; Luo, F.; Liu, Y.; Ding, W. Optimal Siting and Sizing of Distributed Generation Based on Improved Nondominated Sorting Genetic Algorithm II. Processes 2019, 7, 955. [Google Scholar] [CrossRef] [Green Version]
- SriKumar, K. Optimal Size & Location of Distributed Generation using Bird Swarm Optimization with Cuckoo Search Sorting Algorithm. Int. J. Eng. Adv. Technol. (IJEAT) 2019, 8, 781–787. [Google Scholar]
- Ali, S.M.; Mohamed, A.-A.A.; Hemeida, A. A Pareto Strategy based on Multi-Objective for Optimal Placement of Distributed Generation Considering Voltage Stability. In Proceedings of the 2019 International Conference on Innovative Trends in Computer Engineering (ITCE), Aswan, Egypt, 2–4 February 2019; pp. 498–504. [Google Scholar]
- Saad, M.A.; El-Ghany, H.A.A.; Azmy, A.M. Optimal DG deployment to improve voltage stability margin considering load variation. In Proceedings of the 2017 Nineteenth International Middle East Power Systems Conference (MEPCON), Nasr City, Egypt, 19–21 December 2017; pp. 765–771. [Google Scholar]
- Bouketir, O.; Sebaa, H.; Bouktir, T. Optimal Integration of Distributed Generation in a Radial Distribution System Using BW/FW Sweep and PSO Algorithm. Adv. Eng. Forum 2020, 35, 94–101. [Google Scholar] [CrossRef]
- Ali, S.M.; Mohamed, A.-A.A.; Hemeida, A. Impact of Optimal Allocation of Renewable Distributed Generation in Radial Distribution Systems Based on Different Optimization Algorithms. In Proceedings of the 2019 International Conference on Innovative Trends in Computer Engineering (ITCE), Aswan, Egypt, 2–4 February 2019; pp. 472–478. [Google Scholar]
- Duong, M.Q.; Pham, T.D.; Nguyen, T.T.; Doan, A.T.; Van Tran, H. Determination of optimal location and sizing of solar photovoltaic distribution generation units in radial distribution systems. Energies 2019, 12, 174. [Google Scholar] [CrossRef] [Green Version]
- Abul’Wafa, A.R. Ant-lion optimizer-based multi-objective optimal simultaneous allocation of distributed generations and synchronous condensers in distribution networks. Int. Trans. Electr. Energy Syst. 2018, 29, e2755. [Google Scholar] [CrossRef]
- Nagaballi, S.; Kale, V.S. Optimal Deployment of DG and DSTATCOM in Distribution System Using Swarm Intelligent Techniques. In Proceedings of the 2018 International Conference on Robotics, Control and Automation Engineering, Beijing, China, 26–28 December 2018; pp. 65–70. [Google Scholar]
- Prakash, D.; Lakshminarayana, C. Multiple DG placements in radial distribution system for multi objectives using Whale Optimization Algorithm. Alex. Eng. J. 2018, 57, 2797–2806. [Google Scholar] [CrossRef]
- Peesapati, R.; Yadav, V.K.; Kumar, N. Flower pollination algorithm based multi-objective congestion management considering optimal capacities of distributed generations. Energy 2018, 147, 980–994. [Google Scholar] [CrossRef]
- Saleh, A.A.; Mohamed, A.-A.A.; Hemeida, A.M.; Ibrahim, A.A. Multi-Objective Whale Optimization Algorithm for Optimal Allocation of Distributed Generation and Capacitor Bank. In Proceedings of the 2019 International Conference on Innovative Trends in Computer Engineering (ITCE), Aswan, Egypt, 2–4 February 2019; pp. 459–465. [Google Scholar]
- Mahfoud, R.J.; Sun, Y.; Alkayem, N.F.; Alhelou, H.H.; Siano, P.; Shafie-Khah, M. A novel combined evolutionary algorithm for optimal planning of distributed generators in radial distribution systems. Appl. Sci. 2019, 9, 3394. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, T.P.; Vo, D.N. A novel stochastic fractal search algorithm for optimal allocation of distributed generators in radial distribution systems. Appl. Soft Comput. 2018, 70, 773–796. [Google Scholar] [CrossRef]
- Sukhwal, P.B.; Singh, P. Optimization of Distributed Generation using Genetics Algorithm and Improvement in Multiobjective Function. Int. Res. J. Eng. Technol. (IRJET) 2019, 6, 370–377. [Google Scholar]
- Quadri, I.A.; Bhowmick, S.; Joshi, D. A comprehensive technique for optimal allocation of distributed energy resources in radial distribution systems. Appl. Energy 2018, 211, 1245–1260. [Google Scholar] [CrossRef]
- Ali, E.; Elazim, S.M.A.; Abdelaziz, A.Y. Optimal allocation and sizing of renewable distributed generation using ant lion optimization algorithm. Electr. Eng. 2018, 100, 99–109. [Google Scholar] [CrossRef]
- Selim, A.; Kamel, S.; Alghamdi, A.S.; Jurado, F. Optimal Placement of DGs in Distribution System Using an Improved Harris Hawks Optimizer Based on Single-and Multi-Objective Approaches. IEEE Access 2020, 8, 52815–52829. [Google Scholar] [CrossRef]
- Kamel, S.; Selim, A.; Jurado, F.; Yu, J.; Xie, K.; Yu, C. Multi-Objective Whale Optimization Algorithm for Optimal Integration of Multiple DGs into Distribution Systems. In Proceedings of the 2019 IEEE Innovative Smart Grid Technologies-Asia (ISGT Asia), Chengdu, China, 21–24 May 2019; pp. 1312–1317. [Google Scholar]
- Ali, E.; Elazim, S.A.; Abdelaziz, A.Y. Ant Lion Optimization Algorithm for optimal location and sizing of renewable distributed generations. Renew. Energy 2017, 101, 1311–1324. [Google Scholar] [CrossRef]
- Game, P.S.; Vaze, D. Bio-inspired Optimization: Metaheuristic algorithms for optimization. arXiv 2020, arXiv:2003.11637. [Google Scholar]
- Zhao, W.; Zhang, Z.; Wang, L. Manta ray foraging optimization: An effective bio-inspired optimizer for engineering applications. Eng. Appl. Artif. Intell. 2020, 87, 103300. [Google Scholar] [CrossRef]
- Stevens, G.M.W. Conservation and Population Ecology of Manta Rays in the Maldives. Ph.D. Thesis, University of York, York, UK, 2016. [Google Scholar]
- Rajendran, A.; Narayanan, K. Optimal installation of different DG types in radial distribution system considering load growth. Electr. Power Compon. Syst. 2017, 3, 739–751. [Google Scholar] [CrossRef]
- Sharma, S.K.; Palwalia, D.K.; Shrivastava, V. Distributed generation integration optimization using fuzzy logic controller. AIMS Energy 2019, 7, 337–348. [Google Scholar] [CrossRef]
- Kazeminejad, M.; Ghaffarianfar, M.; Hajizadeh, A. Optimal Sizing and Location of Distributed Generation Units to Improve Voltage Stability and Reduce Power Loss in the Distribution System. J. Appl. Dyn. Syst. Control 2019, 2, 41–47. [Google Scholar]
- Selim, A.; Kamel, S.; Jurado, F. Efficient optimization technique for multiple DG allocation in distribution networks. Appl. Soft Comput. 2020, 86, 105938. [Google Scholar] [CrossRef]
- Tolba, M.; Rezk, H.; Tulsky, V.; Diab, A.A.Z.; Abdelaziz, A.Y.; Vanin, A. Impact of optimum allocation of renewable distributed generations on distribution networks based on different optimization algorithms. Energies 2018, 11, 245. [Google Scholar] [CrossRef] [Green Version]
- Rupa, M.; Ganesh, S. Power flow analysis for radial distribution system using backward/forward sweep method. Int. J. Electr. Comput. Electron. Commun. Eng. 2014, 8, 1540–1544. [Google Scholar]
- Upper, N.; Hemeida, A.M.; Ibrahim, A.A. Moth-Flame Algorithm and Loss Sensitivity Factor for Optimal Allocation of Shunt Capacitor Banks in Radial Distribution Systems. In Proceedings of the 2017 Nineteenth International Middle East Power Systems Conference (MEPCON), Nasr City, Egypt, 19–21 December 2017; pp. 851–856. [Google Scholar]
- Selem, S.I.; Hasanien, H.M.; El-Fergany, A.A. Parameters extraction of PEMFC’s model using manta rays foraging optimizer. Int. J. Energy Res. 2020, 44, 4629–4640. [Google Scholar] [CrossRef]
- Ghosh, K.K.; Guha, R.; Bera, S.K.; Kumar, N.; Sarkar, R. S-Shaped versus V-Shaped Transfer Functions for Binary Manta Ray Foraging Optimization in Feature Selection Problem. Artif. Intell. Mach. Learn. 2020. [Google Scholar] [CrossRef]
Reference | Method | Location | Size kW | APL kW | VD | VSI | LR (%) |
---|---|---|---|---|---|---|---|
Proposed | MRFO | 30 | 1302.5 | 77.3793 | 0.0063 | 0.9182 | 63.3239 |
24 | 1136.4 | ||||||
13 | 962.292 | ||||||
[51] | QODELFA | 13 | 964.7 | 77.408 | 0.00621 | 0.9182 | 63.31 |
24 | 1133.4 | ||||||
30 | 1301.7 | ||||||
[52] | SFSA | 13 | 964.7 | 77.410 | 0.006232 | 0.9182 | 63.31 |
24 | 1133.7 | ||||||
30 | 1301.8 | ||||||
[53] | GA | 25 | 909.0 | 95.8 | 0.0007 | 0.9701 | 54.6 |
30 | 1684.0 | ||||||
13 | 1658.0 | ||||||
[54] | CTLBO | 13 | 1036.4 | 85.9595 | 0.0026 | 0.9481 | 59.26 |
25 | 1163.1 | ||||||
30 | 1521.7 | ||||||
[54] | CTLBO ε constraint | 13 | 1.1926 | 96.1732 | 0.0009 | 0.9638 | 54.4 |
24 | 0.8706 | ||||||
30 | 1.6296 | ||||||
[56] | MOHHO | 13 | 1207 | 92.95 | 0.002 | 0.9654 | 55.94 |
25 | 763 | ||||||
31 | 1400 | ||||||
[56] | MOIHHO | 14 | 1223 | 92.25 | 0.0019 | 0.9580 | 56.27 |
24 | 1144 | ||||||
31 | 1290 | ||||||
[57] | MOPSO | 12 | 1200 | 83.99 | 0.0053 | 0.919 | 60.19 |
25 | 949.8 | ||||||
33 | 1142.7 | ||||||
[57] | MOWOA | 14 | 1021.6 | 79.72 | 0.0045 | 0.9249 | 62.214 |
24 | 1200 | ||||||
31 | 1200 |
Reference | Method | Location | Size | APL (kW) | VD | VSI | LR (%) | |
---|---|---|---|---|---|---|---|---|
(kW) | (KVAR) | |||||||
proposed | MRFO | 30 | 1297.20 | 426.36 | 29.1317 | 0.0008 | 0.9662 | 86.1922 |
24 | 1098.00 | 360.88 | ||||||
13 | 911.31 | 299.53 | ||||||
[51] | QODELFA | 13 | 916.9 | 301.3 | 29.386 | 0.0007 | 0.9698 | 86.07 |
24 | 1146.6 | 376.8 | ||||||
30 | 1316.7 | 432.7 | ||||||
[52] | SFSA | 13 | 917.4 | 301.5 | 29.383 | 0.000673 | 0.9697 | 86.07 |
24 | 1146.3 | 376.8 | ||||||
30 | 1315.7 | 432.4 | ||||||
[56] | MOHHO | 13 | 1008.0 | 331.0 | 31.4 | 0.0005 | 0.976 | 85.1171 |
25 | 910.0 | 299.0 | ||||||
30 | 1334.0 | 439.0 | ||||||
[56] | MOIHHO | 13 | 924 | 304 | 30.6 | 0.0004 | 0.979 | 85.4963 |
24 | 1312 | 431 | ||||||
30 | 1356 | 446 |
Reference | Method | Location | Size | APL (kW) | VD | VSI | LR (%) | |
---|---|---|---|---|---|---|---|---|
(kW) | (KVAR) | |||||||
proposed | MRFO | 13 | 792.710 | 457.72 | 15.4956 | 0.00035 | 0.9763 | 92.6554 |
24 | 1039.7 | 600.35 | ||||||
30 | 1239.6 | 715.75 | ||||||
[51] | QODELFA | 13 | 791.1 | 456.7 | 15.498 | 0.0003 | 0.9764 | 92.65 |
24 | 1041.1 | 599.1 | ||||||
30 | 1243.1 | 717.8 |
Reference | Method | Location | DG Capacity and PF | APL (kW) | VD | VSI | LR (%) | ||
---|---|---|---|---|---|---|---|---|---|
(kW) | (KVAR) | (Pf) | |||||||
Proposed | MRFO | 13 | 809.9112 | 411.27 | 0.8916 | 11.918 | 0.000338 | 0.9760 | 93.8559 |
30 | 1072.4 | 1016.2 | 0.7258 | ||||||
24 | 1079.0 | 533.9 | 0.8963 | ||||||
[52] | SFSA | 13 | 834.0 | 391.6 | 0.905 | 11.911 | 0.000334 | 0.9763 | 94.35 |
24 | 1064.8 | 531.4 | 0.895 | ||||||
30 | 1059.2 | 1025.9 | 0.718 | ||||||
[56] | MOHHO | 12 | 951 | 516 | 0.88 | 18.8 | 0.0005 | 0.978 | 91.0892 |
25 | 786 | 436 | 0.87 | ||||||
30 | 1381 | 809 | 0.86 | ||||||
[56] | MOIHHO | 12 | 916 | 576 | 0.85 | 15.0 | 0.0003 | 0.978 | 92.8903 |
24 | 1088 | 386 | 0.94 | ||||||
30 | 1171 | 830 | 0.82 |
Case | Location | DG Capacity and PF | APL (kW) | VD | VSI | LR (%) | ||
---|---|---|---|---|---|---|---|---|
(kW) | (KVAR) | (Pf) | ||||||
Optimum pf | 13 | 809.9112 | 411.27 | 0.8916 | 11.918 | 0.000338 | 0.976 | 93.8559 |
30 | 1072.4 | 1016.2 | 0.7258 | |||||
24 | 1079.0 | 533.9 | 0.8963 | |||||
0.866 pf | 13 | 792.710 | 457.72 | 0.866 | 15.4956 | 0.00035 | 0.976 | 92.6554 |
24 | 1039.7 | 600.35 | 0.866 | |||||
30 | 1239.6 | 715.75 | 0.866 | |||||
0.95 pf | 30 | 1297.20 | 426.36 | 0.95 | 29.1317 | 0.0008 | 0.9662 | 86.1922 |
24 | 1098.00 | 360.88 | 0.95 | |||||
13 | 911.31 | 299.53 | 0.95 | |||||
Unity pf | 30 | 1302.5 | 0 | 1 | 77.3793 | 0.0063 | 0.9182 | 63.3239 |
24 | 1136.4 | 0 | 1 | |||||
13 | 962.292 | 0 | 1 |
Reference | Method | Location | Size (kW) | APL (kW) | VD | VSI | LR (%) |
---|---|---|---|---|---|---|---|
Proposed | MRFO | 19 | 473.1375 | 71.0207 | 0.0022 | 0.9402 | 68.4268 |
11 | 591.3010 | ||||||
61 | 1859.3 | ||||||
[51] | QODELFA | 11 | 629.4 | 72.295 | 0.00150 | 0.9525 | 67.87 |
20 | 438.6 | ||||||
61 | 1953.7 | ||||||
[52] | SFSA | 11 | 570.3 | 72.445 | 0.001434 | 0.9537 | 67.80 |
19 | 466.1 | ||||||
61 | 1967.4 | ||||||
[54] | CTLPO | 11 | 560.3 | 76.372 | 0.0008 | 0.9770 | 66.0478 |
18 | 427.4 | ||||||
61 | 2153.4 | ||||||
[54] | CTLPO ε constraint | 12 | 965.8 | 79.66 | 0.0003 | 0.9770 | 64.5861 |
25 | 230.7 | ||||||
61 | 2133.6 | ||||||
[56] | MOHHO | 20 | 643.6 | 81.0 | 0.0008 | 0.9720 | 63.9904 |
60 | 971.4 | ||||||
61 | 1328.2 | ||||||
[56] | MOIHHO | 18 | 796.2 | 80.8 | 0.0007 | 0.978 | 64.0793 |
61 | 1447.1 | ||||||
64 | 707.5 | ||||||
[57] | MOPSO | 21 | 383.6 | 82.79 | 0.0015 | 0.9455 | 63.1946 |
61 | 1770.8 | ||||||
66 | 1450.2 | ||||||
[57] | MOWOA | 20 | 558.8 | 75.56 | 0.00083 | 0.9643 | 66.4088 |
53 | 784.9 | ||||||
61 | 1970.1 |
Reference | Method | Location | Size | APL (kW) | VD | VSI | LR (%) | |
---|---|---|---|---|---|---|---|---|
(kW) | (KVAR) | |||||||
proposed | MRFO | 11 | 598.0106 | 196.5566 | 20.7702 | 0.00016 | 0.9772 | 90.77 |
18 | 425.9067 | 139.9888 | ||||||
61 | 1895.7 | 623.1016 | ||||||
[51] | QODELFA | 11 | 579.7 | 190.5 | 20.774 | 0.00015 | 0.9770 | 90.77 |
18 | 434.0 | 142.6 | ||||||
61 | 1901.3 | 624.9 | ||||||
[52] | SFSA | 11 | 5435 | 1786 | 20.727 | 0.000330 | 0.9772 | 90.79 |
17 | 4132 | 1358 | ||||||
61 | 1.8728 | 6156 | ||||||
[56] | MOHHO | 23 | 519 | 171 | 30.2 | 0.001 | 0.98 | 86.5742 |
60 | 1176 | 387 | ||||||
62 | 1179 | 387 | ||||||
[56] | MOIHHO | 13 | 1083 | 341 | 28.9 | 0.0003 | 0.98 | 87.1521 |
61 | 799 | 263 | ||||||
63 | 1229 | 404 |
Reference | Method | Location | Size | APL (kW) | VD | VSI | LR (%) | |
---|---|---|---|---|---|---|---|---|
(kW) | (KVAR) | |||||||
proposed | MRFO | 11 | 505.5087 | 352.8473 | 4.2952 | 0.00010 | 0.9773 | 98.09 |
61 | 1692.7 | 1181.5 | ||||||
18 | 382.3651 | 266.8925 | ||||||
[51] | QODELFA | 11 | 505.8 | 353.1 | 4.297 | 0.00010 | 0.9771 | 98.09 |
18 | 385.9 | 258.9 | ||||||
61 | 1693.9 | 1182.3 |
Reference | Method | Location | DG Capacity and PF | APL (kW) | VD | VSI | LR (%) | ||
---|---|---|---|---|---|---|---|---|---|
(kW) | (KVAR) | (pf) | |||||||
Proposed | MRFO | 17 | 388.009 | 254.684 | 0.8360 | 4.2775 | 0.000106 | 0.9773 | 98.0984 |
11 | 494.701 | 365.035 | 0.8047 | ||||||
61 | 1680.9 | 1203.00 | 0.8132 | ||||||
[52] | SFSA | 11 | 566.9 | 397.0 | 0.819 | 4.298 | 0.000116 | 0.9773 | 98.0892 |
21 | 336.0 | 222.7 | 0.833 | ||||||
61 | 1675.2 | 1178.8 | 0.818 | ||||||
[56] | MOHHO | 15 | 332 | 846 | 0.37 | 21.8 | 0.0008 | 0.98 | 90.3085 |
60 | 314 | 838 | 0.35 | ||||||
61 | 1784 | 335 | 0.98 | ||||||
[56] | MOIHHO | 13 | 1064 | 779 | 0.81 | 13.9 | 0.0005 | 0.991 | 93.8206 |
49 | 1235 | 403 | 0.95 | ||||||
62 | 1610 | 1181 | 0.81 |
Method | Location | DG Capacity and PF | APL (kW) | VD | VSI | LR (%) | ||
---|---|---|---|---|---|---|---|---|
(kW) | (KVAR) | (Pf) | ||||||
Optimum pf | 17 | 388.009 | 254.684 | 0.8360 | 4.2775 | 0.000106 | 0.9773 | 98.0984 |
11 | 494.701 | 365.035 | 0.8047 | |||||
61 | 1680.9 | 1203.00 | 0.8132 | |||||
0.82 pf | 11 | 505.5087 | 352.8473 | 0.82 | 4.2952 | 0.00010 | 0.9773 | 98.09 |
61 | 1692.7 | 1181.5 | 0.82 | |||||
18 | 382.3651 | 266.8925 | 0.82 | |||||
0.95 pf | 11 | 598.0106 | 196.5566 | 0.95 | 20.7702 | 0.00016 | 0.9772 | 90.77 |
18 | 425.9067 | 139.9888 | 0.95 | |||||
61 | 1895.7 | 623.1016 | 0.95 | |||||
Unity pf | 18 | 530.0261 | 0 | 1 | 72.7496 | 0.0016 | 0.9522 | 67.6582 |
11 | 619.4599 | 0 | 1 | |||||
61 | 1920.7 | 0 | 1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hemeida, M.G.; Alkhalaf, S.; Mohamed, A.-A.A.; Ibrahim, A.A.; Senjyu, T. Distributed Generators Optimization Based on Multi-Objective Functions Using Manta Rays Foraging Optimization Algorithm (MRFO). Energies 2020, 13, 3847. https://doi.org/10.3390/en13153847
Hemeida MG, Alkhalaf S, Mohamed A-AA, Ibrahim AA, Senjyu T. Distributed Generators Optimization Based on Multi-Objective Functions Using Manta Rays Foraging Optimization Algorithm (MRFO). Energies. 2020; 13(15):3847. https://doi.org/10.3390/en13153847
Chicago/Turabian StyleHemeida, Mahmoud G., Salem Alkhalaf, Al-Attar A. Mohamed, Abdalla Ahmed Ibrahim, and Tomonobu Senjyu. 2020. "Distributed Generators Optimization Based on Multi-Objective Functions Using Manta Rays Foraging Optimization Algorithm (MRFO)" Energies 13, no. 15: 3847. https://doi.org/10.3390/en13153847
APA StyleHemeida, M. G., Alkhalaf, S., Mohamed, A. -A. A., Ibrahim, A. A., & Senjyu, T. (2020). Distributed Generators Optimization Based on Multi-Objective Functions Using Manta Rays Foraging Optimization Algorithm (MRFO). Energies, 13(15), 3847. https://doi.org/10.3390/en13153847