An Algorithm for Circuit Parameter Identification in Lightning Impulse Voltage Generation for Low-Inductance Loads
Abstract
:1. Introduction
2. Proposed Approach for Parameter Selection of the Lightning Impulse Voltage Generation for Low Inductance Loads
3. Verification of Proposed Approach
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- IEC 60060-1. High-Voltage Test Techniques. Part 1: General Definitions and Test Requirements, 3rd ed.; International Electrotechnical Commission (IEC): Geneva, Switzerland, 2010. [Google Scholar]
- IEEE Standard 4TM-2013. IEEE Standard for High-Voltage Testing Techniques; Institute of Electrical and Electronics Engineers (IEEE): Piscataway, NJ, USA, 2013. [Google Scholar]
- Kuffel, E.; Zaengl, W.S.; Kuffel, J. High Voltage Engineering: Fundamentals, 2nd ed.; Newnes: Oxford, UK, 2000. [Google Scholar]
- IEC 60076-1. Power Transformer. Part 1: General, 3rd ed.; International Electrotechnical Commission (IEC): Geneva, Switzerland, 2011. [Google Scholar]
- IEC 60076-3. Power Transformer. Part 3: Insulation Level, Dielectric Tests and External Clearances in Air, 3rd ed.; International Electrotechnical Commission (IEC): Geneva, Switzerland, 2013. [Google Scholar]
- IEC 60076-4. Power Transformer. Part 4: Guide to the Lightning Impulse and Switching Impulse Testing—Power Transformer and Reactors, 1st ed.; International Electrotechnical Commission (IEC): Geneva, Switzerland, 2002. [Google Scholar]
- Karthikeyan, B.; Rajesh, R.; Balasubramanian, M.; Saravanan, S. Experimental investigations on IEC suggested methods for improving waveshape during impulse voltage testing. In Proceedings of the 2006 IEEE 8th International Conference on Properties & Applications of Dielectric Materials, Bali, Indonesia, 26–30 June 2006. [Google Scholar]
- Glaninger, P. Impulse testing of low inductance electrical equipment. In Proceedings of the 2nd International Symposium on High Voltage Technology, Zurich, Switzerland, 9–13 September 1975; pp. 140–144. [Google Scholar]
- Schrader, W.; Schufft, W. Impulse Voltage Test of Power Transformers; Paper No. 13; HV Technologies, Inc.: Manassas, VA, USA, 2000. [Google Scholar]
- IEC 61083-2. Instruments and Software Used for Measurement in High-Voltage and High Current Tests—Part 2: Requirements for Software for Tests with Impulse Voltages and Currents, 2nd ed.; International Electrotechnical Commission (IEC): Geneva, Switzerland, 2013. [Google Scholar]
- Pattanadech, N.; Yutthagowith, P. Fast curve fitting algorithm for parameter evaluation in lightning impulse test technique. IEEE Trans. Dielectr. Electr. Insul. 2015, 22, 2931–2936. [Google Scholar] [CrossRef]
- Yutthagowith, P.; Pattanadech, N. Improved least-square prony analysis technique for parameter evaluation of lightning impulse voltage and current. IEEE Trans. Power Deliv. 2016, 31, 271–277. [Google Scholar] [CrossRef]
- Feser, K. Circuit design of impulse generators for the lightning impulse voltage testing of transformers. Bull. SEV/VSE Bd 1978. Available online: www.haefely.com (accessed on 15 November 2019).
- Mirzaei, H. A Simple Fast and Accurate Simulation Method for Power Transformer Lightning Impulse Test. IEEE Trans. Power Deliv. 2019, 33, 1151–1160. [Google Scholar] [CrossRef]
- Mirzaei, H.; Bayat, F.; Miralikhani, K. A Semi-Analytic Approach for Determining Marx Generator Optimum Set-up during Power Transformers Factory Test. IEEE Trans. Power Deliv. (Early Access) 2020. [Google Scholar] [CrossRef]
- Yutthagowith, P.; Tuethong, P.; Pattanadech, N. Effective circuit parameter determination in lightning impulse voltage tests of air core inductors. In Proceedings of the 12th IET International Conference on AC and DC Power Transmission, Beijing, China, 28–29 May 2016. [Google Scholar]
- Demuth, H.; Beale, M. Neural Network Toolbox User’s Guide; The Mathworks Inc.: Natick, MA, USA, 1992. [Google Scholar]
Waveform Parameters | Circuit Cases | |
---|---|---|
Figure 1b (Case 1) | Figure 1b (Case 2) | |
Efficiency | 92.63% | 93.86% |
Overshoot rate (<5%) | −0.69% (✓) | −0.40% (✓) |
Undershoot rate (<50%) | 13.3% (✓) | 7.29% (✓) |
T1 (0.84–1.56 μs) | 1.05 μs (✓) | 1.08 μs (✓) |
T2 (40–60 μs) | 12.16 μs (✕) | 15.15 μs (✕) |
Circuit and Time Parameters | Circuit Cases | |
---|---|---|
Figure 2 (K. Feser) | Figure 2 (This Paper) | |
LL | 2.0 mH | 2.0 mH |
Cb | 4.0 nF | 4.0 nF |
Cs | 2.0 μF | 2.0 μF |
Rd | 100 Ω | 120 Ω |
Ld | 125 µH | 100 µH |
Rp | 1600 Ω | 310 Ω |
Re | 52.2 Ω | 58.3 Ω |
Efficiency | 106.03% | 98.75% |
Overshoot rate (<5%) | +8.12% (✕) | +1.33% (✓) |
Undershoot rate (<50%) | 38.09% (✓) | 41.04% (✓) |
T1 (0.84–1.56 μs) | 0.986 μs (✓) | 1.16 μs (✓) |
T2 (40–60 μs) | 37.70 μs (✕) | 41.14 μs (✓) |
Case No. | Circuit Component Parameters | ||||||
---|---|---|---|---|---|---|---|
LL (mH) | Cb (nF) | Cs (µF) | Rd (Ω) | Ld (mH) | Rp (Ω) | Re (Ω) | |
1 | 0.4 | 1.0 | 9.0 | 400 | 0.5 | 320.00 | 16.00 |
2 | 0.8 | 1.0 | 5.0 | 400 | 0.5 | 640.00 | 25.80 |
3 | 1.0 | 1.0 | 4.0 | 400 | 0.5 | 800.00 | 31.00 |
4 | 2.0 | 1.0 | 2.0 | 400 | 0.5 | 1600.00 | 56.60 |
5 | 3.0 | 1.0 | 1.5 | 400 | 0.5 | 2400.00 | 77.30 |
6 | 4.0 | 1.0 | 1.0 | 400 | 0.5 | 3200.00 | 107.00 |
7 | 0.4 | 2.0 | 9.0 | 200 | 0.25 | 320.00 | 13.60 |
8 | 0.8 | 2.0 | 5.0 | 200 | 0.25 | 640.00 | 23.20 |
9 | 1.0 | 2.0 | 4.0 | 200 | 0.25 | 800.00 | 28.30 |
10 | 2.0 | 2.0 | 2.0 | 200 | 0.25 | 1600.00 | 53.70 |
11 | 3.0 | 2.0 | 1.5 | 200 | 0.25 | 2400.00 | 74.50 |
12 | 4.0 | 2.0 | 1.0 | 200 | 0.25 | 3200.00 | 104.00 |
13 | 0.4 | 4.0 | 9.0 | 100 | 0.125 | 320.00 | 12.20 |
14 | 0.8 | 4.0 | 5.0 | 100 | 0.125 | 640.00 | 21.80 |
15 | 1.0 | 4.0 | 4.0 | 100 | 0.125 | 800.00 | 26.80 |
16 | 2.0 | 4.0 | 2.0 | 100 | 0.125 | 1600.00 | 52.20 |
17 | 3.0 | 4.0 | 1.5 | 100 | 0.125 | 2400.00 | 73.00 |
18 | 4.0 | 4.0 | 1.0 | 100 | 0.125 | 3200.00 | 103.00 |
19 | 0.4 | 8.0 | 9.0 | 50 | 0.0625 | 320.00 | 11.50 |
20 | 0.8 | 8.0 | 5.0 | 50 | 0.0625 | 640.00 | 21.00 |
21 | 1.0 | 8.0 | 4.0 | 50 | 0.0625 | 800.00 | 26.10 |
22 | 2.0 | 8.0 | 2.0 | 50 | 0.0625 | 1600.00 | 51.40 |
23 | 3.0 | 8.0 | 1.5 | 50 | 0.0625 | 2400.00 | 72.30 |
24 | 4.0 | 8.0 | 1.0 | 50 | 0.0625 | 3200.00 | 102.00 |
25 | 0.4 | 10.0 | 9.0 | 40 | 0.05 | 320.00 | 11.30 |
26 | 0.8 | 10.0 | 5.0 | 40 | 0.05 | 640.00 | 20.90 |
27 | 1.0 | 10.0 | 4.0 | 40 | 0.05 | 800.00 | 25.90 |
28 | 2.0 | 10.0 | 2.0 | 40 | 0.05 | 1600.00 | 51.20 |
29 | 3.0 | 10.0 | 1.5 | 40 | 0.05 | 2400.00 | 72.10 |
30 | 4.0 | 10.0 | 1.0 | 40 | 0.05 | 3200.00 | 102.00 |
Case No. | Circuit Component Parameters | ||||||
---|---|---|---|---|---|---|---|
LL (mH) | Cb (nF) | Cs (µF) | Rd (Ω) | Ld (mH) | Rp (Ω) | Re (Ω) | |
1 | 0.4 | 1.0 | 9.0 | 1000 | 0.25 | 382.43 | 12.75 |
2 | 0.8 | 1.0 | 5.0 | 700 | 0.25 | 523.82 | 21.74 |
3 | 1.0 | 1.0 | 4.0 | 650 | 0.25 | 573.47 | 26.52 |
4 | 2.0 | 1.0 | 2.0 | 550 | 0.25 | 728.40 | 53.67 |
5 | 3.0 | 1.0 | 1.5 | 500 | 0.25 | 818.94 | 79.13 |
6 | 4.0 | 1.0 | 1.0 | 500 | 0.25 | 861.40 | 117.35 |
7 | 0.4 | 2.0 | 9.0 | 400 | 0.15 | 266.17 | 11.73 |
8 | 0.8 | 2.0 | 5.0 | 300 | 0.15 | 356.03 | 20.68 |
9 | 1.0 | 2.0 | 4.0 | 300 | 0.15 | 380.73 | 25.43 |
10 | 2.0 | 2.0 | 2.0 | 250 | 0.15 | 471.13 | 59.02 |
11 | 3.0 | 2.0 | 1.5 | 250 | 0.15 | 504.20 | 82.49 |
12 | 4.0 | 2.0 | 1.0 | 250 | 0.15 | 522.66 | 128.84 |
13 | 0.4 | 4.0 | 9.0 | 150 | 0.10 | 187.94 | 11.18 |
14 | 0.8 | 4.0 | 5.0 | 130 | 0.10 | 245.45 | 20.12 |
15 | 1.0 | 4.0 | 4.0 | 130 | 0.10 | 261.70 | 26.53 |
16 | 2.0 | 4.0 | 2.0 | 120 | 0.10 | 310.07 | 58.33 |
17 | 3.0 | 4.0 | 1.5 | 120 | 0.10 | 328.52 | 90.92 |
18 | 4.0 | 4.0 | 1.0 | 120 | 0.10 | 338.63 | 140.87 |
19 | 0.4 | 8.0 | 9.0 | 60 | 0.10 | 123.14 | 11.18 |
20 | 0.8 | 8.0 | 5.0 | 55 | 0.10 | 172.79 | 20.12 |
21 | 1.0 | 8.0 | 4.0 | 50 | 0.10 | 186.83 | 26.53 |
22 | 2.0 | 8.0 | 2.0 | 50 | 0.10 | 237.47 | 58.32 |
23 | 3.0 | 8.0 | 1.5 | 50 | 0.10 | 261.17 | 90.92 |
24 | 4.0 | 8.0 | 1.0 | 50 | 0.10 | 274.91 | 140.87 |
25 | 0.4 | 10.0 | 9.0 | 50 | 0.05 | 111.69 | 12.02 |
26 | 0.8 | 10.0 | 5.0 | 50 | 0.05 | 135.48 | 23.47 |
27 | 1.0 | 10.0 | 4.0 | 45 | 0.05 | 145.30 | 29.16 |
28 | 2.0 | 10.0 | 2.0 | 45 | 0.05 | 161.40 | 70.43 |
29 | 3.0 | 10.0 | 1.5 | 45 | 0.05 | 167.62 | 112.73 |
30 | 4.0 | 10.0 | 1.0 | 43 | 0.05 | 173.84 | 222.74 |
Case No. | Waveform Parameters | ||||
---|---|---|---|---|---|
Efficiency (%) | T1 (µs) | T2 (µs) | Overshoot (%) | Undershoot (%) | |
1 | 64.39 | 1.04 | 47.11 | +2.81 | 39.50 |
2 | 79.88 | 1.03 | 44.35 | +2.83 | 39.15 |
3 | 83.97 | 1.03 | 43.15 | +2.96 | 38.98 |
4 | 93.59 | 1.03 | 41.56 | +3.08 | 39.98 |
5 | 97.20 | 1.02 | 43.96 | +2.82 | 41.06 |
6 | 99.25 | 1.02 | 41.38 | +2.98 | 41.58 |
7 | 76.02 | 1.11 | 43.25 | +2.60 | 39.26 |
8 | 88.15 | 1.10 | 42.02 | +2.64 | 38.81 |
9 | 91.29 | 1.11 | 41.02 | +3.02 | 38.38 |
10 | 97.50 | 1.08 | 42.14 | +2.20 | 42.21 |
11 | 100.00 | 1.09 | 43.38 | +2.57 | 41.10 |
12 | 101.35 | 1.10 | 41.33 | +2.62 | 42.17 |
13 | 82.69 | 1.16 | 41.53 | +1.29 | 39.37 |
14 | 91.96 | 1.16 | 40.95 | +1.43 | 38.53 |
15 | 94.34 | 1.17 | 41.28 | +1.55 | 39.79 |
16 | 98.75 | 1.16 | 41.14 | +1.33 | 41.04 |
17 | 100.58 | 1.17 | 43.79 | +1.41 | 41.90 |
18 | 101.30 | 1.17 | 41.05 | +1.52 | 41.72 |
19 | 79.74 | 1.17 | 42.64 | −2.26 | 40.11 |
20 | 89.12 | 1.25 | 41.81 | −1.43 | 38.95 |
21 | 90.86 | 1.20 | 42.29 | −1.95 | 40.36 |
22 | 94.78 | 1.16 | 42.00 | −2.36 | 41.33 |
23 | 96.43 | 1.18 | 44.48 | −2.30 | 41.82 |
24 | 96.94 | 1.18 | 41.66 | −2.19 | 41.52 |
25 | 91.16 | 1.19 | 41.17 | +0.13 | 41.99 |
26 | 96.92 | 1.24 | 41.99 | +0.60 | 41.78 |
27 | 97.45 | 1.18 | 41.53 | +0.02 | 41.31 |
28 | 99.87 | 1.19 | 41.35 | +0.20 | 41.81 |
29 | 100.85 | 1.20 | 43.22 | +0.48 | 41.18 |
30 | 100.83 | 1.20 | 41.04 | +0.37 | 41.62 |
Case No. | Circuit Component Parameters | ||||||
---|---|---|---|---|---|---|---|
LL (mH) | Cb (nF) | Cs (µF) | Rd (Ω) | Ld (mH) | Rp (Ω) | Re (Ω) | |
1 | 0.5 | 1.0 | 8.0 | 893.00 | 0.25 | 423.0 | 14.80 |
2 | 0.5 | 2.0 | 8.0 | 365.00 | 0.15 | 291.0 | 14.30 |
3 | 0.5 | 4.0 | 8.0 | 140.00 | 0.10 | 204.0 | 13.50 |
4 | 0.5 | 8.0 | 8.0 | 57.20 | 0.10 | 139.6 | 13.00 |
5 | 0.5 | 10.0 | 8.0 | 50.40 | 0.05 | 117.3 | 14.70 |
6 | 0.4 | 8.5 | 9.0 | 56.00 | 0.094 | 110.0 | 10.90 |
7 | 0.5 | 8.5 | 8.0 | 54.30 | 0.094 | 120.8 | 13.10 |
8 | 0.8 | 8.5 | 5.0 | 51.04 | 0.094 | 146.8 | 20.49 |
9 | 1.0 | 8.5 | 4.0 | 49.70 | 0.094 | 160.0 | 26.27 |
10 | 2.0 | 8.5 | 2.0 | 47.47 | 0.094 | 201.5 | 61.47 |
11 | 4.0 | 8.5 | 1.0 | 47.36 | 0.094 | 255.6 | 143.96 |
Case No. | Waveform Parameters | ||||
---|---|---|---|---|---|
Efficiency (%) | T1 (µs) | T2 (µs) | Overshoot (%) | Undershoot (%) | |
1 | 69.68 | 1.03 | 48.19 | +2.43 | 40.11 |
2 | 80.50 | 1.12 | 45.35 | +2.41 | 40.75 |
3 | 86.02 | 1.16 | 43.53 | +0.94 | 40.30 |
4 | 83.28 | 1.16 | 43.77 | −2.09 | 39.82 |
5 | 93.19 | 1.23 | 43.43 | −0.03 | 42.80 |
6 | 79.46 | 1.21 | 42.55 | −3.30 | 39.90 |
7 | 82.54 | 1.22 | 44.47 | −3.49 | 40.63 |
8 | 87.65 | 1.22 | 42.74 | −3.38 | 39.97 |
9 | 89.58 | 1.21 | 42.54 | −3.37 | 40.37 |
10 | 93.92 | 1.20 | 42.67 | −3.26 | 42.15 |
11 | 96.89 | 1.19 | 41.51 | −2.24 | 41.24 |
Case No. | Circuit Component Parameters | |||||||
---|---|---|---|---|---|---|---|---|
LL (mH) | Cb (nF) | Cs (µF) | Rd (Ω) | Ld (mH) | Rp (Ω) | Re (Ω) | ||
12 | Simulation | 2.013 | 4.0 | 2.0 | 121.26 | 0.1 | 314.45 | 57.06 |
Experiment | 2.013 | 4.0 | 2.0 | 120.00 | 0.1 | 300.00 | 60.00 | |
13 | Simulation | 1.308 | 8.0 | 3.0 | 50.92 | 0.1 | 205.70 | 35.80 |
Experiment | 1.308 | 8.0 | 3.0 | 50.00 | 0.1 | 200.00 | 35.00 |
Case No. | Waveform Parameters | |||||
---|---|---|---|---|---|---|
Efficiency (%) | T1 (µs) | T2 (µs) | Overshoot (%) | Undershoot (%) | ||
12 | Simulation | 99.02 | 1.16 | 40.79 | +1.65 | 40.36 |
Experiment | 97.48 | 1.14 | 40.49 | +1.49 | 39.31 | |
13 | Simulation | 92.35 | 1.16 | 41.71 | −2.43 | 40.66 |
Experiment | 91.80 | 1.14 | 41.55 | −2.04 | 40.05 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tuethong, P.; Kitwattana, K.; Yutthagowith, P.; Kunakorn, A. An Algorithm for Circuit Parameter Identification in Lightning Impulse Voltage Generation for Low-Inductance Loads. Energies 2020, 13, 3913. https://doi.org/10.3390/en13153913
Tuethong P, Kitwattana K, Yutthagowith P, Kunakorn A. An Algorithm for Circuit Parameter Identification in Lightning Impulse Voltage Generation for Low-Inductance Loads. Energies. 2020; 13(15):3913. https://doi.org/10.3390/en13153913
Chicago/Turabian StyleTuethong, Piyapon, Krit Kitwattana, Peerawut Yutthagowith, and Anantawat Kunakorn. 2020. "An Algorithm for Circuit Parameter Identification in Lightning Impulse Voltage Generation for Low-Inductance Loads" Energies 13, no. 15: 3913. https://doi.org/10.3390/en13153913
APA StyleTuethong, P., Kitwattana, K., Yutthagowith, P., & Kunakorn, A. (2020). An Algorithm for Circuit Parameter Identification in Lightning Impulse Voltage Generation for Low-Inductance Loads. Energies, 13(15), 3913. https://doi.org/10.3390/en13153913