Source Diagnosis of Solid Oxide Fuel Cell System Oscillation Based on Data Driven
Abstract
:1. Introduction
2. Description of the SOFC System
3. Diagnosis Method for the SOFC System’s Oscillation
3.1. Characteristic Variable Selection
3.2. Transfer Entropy
3.3. Granger Causality
4. Results and Discussion
4.1. Characteristic Variable Selection
4.2. SOFC System Oscillation Diagnosis Results and Discussion
4.3. Granger Causality Verification
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bozorgmehri, S.; Hamedi, M. Modeling and Optimization of Anode-Supported Solid Oxide Fuel Cells on Cell Parameters via Artificial Neural Network and Genetic Algorithm. Fuel Cells 2012, 12, 11–23. [Google Scholar] [CrossRef]
- Wu, X.; Ye, Q. Fault diagnosis and prognostic of solid oxide fuel cells. J. Power Sources 2016, 321, 47–56. [Google Scholar] [CrossRef]
- Cao, H.; Li, X. Thermal Management-Oriented Multivariable Robust Control of a kW-Scale Solid Oxide Fuel Cell Stand-Alone System. IEEE Trans. Energy Convers. 2016, 31, 603–612. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, J.; Qi, W.; Chen, Q.; Long, R.; Quan, S. A parallel modular computing approach to real-time simulation of multiple fuel cells hybrid power system. Int. J. Energy Res. 2019, 43, 5266–5283. [Google Scholar] [CrossRef]
- Duan, P.; Chen, T.; Shah, S.L.; Yang, F. Methods for root cause diagnosis of plant-wide oscillations. AIChE J. 2014, 60, 2019–2034. [Google Scholar] [CrossRef]
- Vijay, P.; Tade, M.O.; Shao, Z. Adaptive observer based approach for the fault diagnosis in solid oxide fuel cells. J. Process Control 2019, 84, 101–114. [Google Scholar] [CrossRef]
- Costamagna, P.; De Giorgi, A.; Moser, G.; Pellaco, L.; Trucco, A. Data-driven fault diagnosis in SOFC-based power plants under off-design operating conditions. Int. J. Hydrog. Energy 2019, 44, 29002–29006. [Google Scholar] [CrossRef]
- Wu, X.L.; Xu, Y.W.; Zhao, D.Q.; Li, Z.H.; Zhong, X.B.; Chen, M.T.; Jiang, J.H.; Deng, Z.H.; Fu, X.W.; Li, X. Fault detection and assessment for solid oxide fuel cell system gas supply unit based on novel principal component analysis. J. Power Sources 2019, 436, 226864. [Google Scholar] [CrossRef]
- Wu, X.-l.; Xu, Y.-w.; Zhao, D.-q.; Zhong, X.-b.; Li, D.; Jiang, J.; Deng, Z.; Fu, X.; Li, X. Extended-range electric vehicle-oriented thermoelectric surge control of a solid oxide fuel cell system. Appl. Energy 2020, 263, 114628. [Google Scholar] [CrossRef]
- Xu, Y.-w.; Wu, X.-l.; Zhong, X.; Zhao, D.; Fu, J.; Jiang, J.; Deng, Z.; Fu, X.; Li, X. Development of solid oxide fuel cell and battery hybrid power generation system. Int. J. Hydrog. Energy 2020, 45, 8899–8914. [Google Scholar] [CrossRef]
- Xue, T.; Wu, X.; Zhao, D.; Xu, Y.; Jiang, J.; Deng, Z.; Fu, X.; Li, X. Fault-tolerant control for steam fluctuation in SOFC system with reforming units. Int. J. Hydrog. Energy 2019, 44, 23360–23376. [Google Scholar] [CrossRef]
- Fan, J.; Fu, C.; Yin, H.; Wang, Y.; Jiang, Q. Power transformer condition assessment based on online monitor with SOFC chromatographic detector. Int. J. Electr. Power Energy Syst. 2020, 118, 105805. [Google Scholar] [CrossRef]
- Subotic, V.; Stoeckl, B.; Lawlor, V.; Strasser, J.; Schroettner, H.; Hochenauer, C. Towards a practical tool for online monitoring of solid oxide fuel cell operation: An experimental study and application of advanced data analysis approaches. Appl. Energy 2018, 222, 748–761. [Google Scholar] [CrossRef]
- Dolenc, B.; Juricic, D.; Boskoski, P. Identification of the coupling functions between the process and the degradation dynamics by means of the variational Bayesian inference: An application to the solid-oxide fuel cells. Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci. 2019, 377, 2160. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.-l.; Xu, Y.-W.; Xue, T.; Zhao, D.-q.; Jiang, J.; Deng, Z.; Fu, X.; Li, X. Health state prediction and analysis of SOFC system based on the data driven entire stage experiment. Appl. Energy 2019, 248, 126–140. [Google Scholar] [CrossRef]
- Yim, S.Y.; Ananthakumar, H.G.; Benabbas, L.; Horch, A.; Drathb, R.; Thornhill, N.F. Using process topology in plant-wide control loop performance assessment. Comput. Chem. Eng. 2006, 31, 86–99. [Google Scholar] [CrossRef] [Green Version]
- Jiang, H.; Patwardhan, R.; Shah, S.L. Root cause diagnosis of plant-wide oscillations using the concept of adjacency matrix. J. Process Control 2009, 19, 1347–1354. [Google Scholar] [CrossRef]
- Yang, F.; Shah, S.L.; Xiao, D.Y. Signed directed graph based modeling and its validation from process knowledge and process data. Int. J. Appl. Math. Comput. Sci. 2012, 22, 41–53. [Google Scholar] [CrossRef] [Green Version]
- Thornhill, N.F.; Cox, J.W.; Paulonis, M.A.J.C.E.P. Diagnosis of plant-wide oscillation through data-driven analysis and process understanding. Control Eng. Pract. 2003, 11, 1481–1490. [Google Scholar] [CrossRef] [Green Version]
- Xia, C.M.; Howell, J. Loop status monitoring and fault localisation. J. Process Control 2003, 13, 679–691. [Google Scholar] [CrossRef] [Green Version]
- Xia, C.M.; Howell, J.; Thornhill, N.F. Detecting and isolating multiple plant-wide oscillations via spectral independent component analysis. Automatica 2005, 41, 2067–2075. [Google Scholar] [CrossRef] [Green Version]
- Jiang, H.; Choudhury, M.A.A.S.; Shah, S.L. Detection and diagnosis of plant-wide oscillations from industrial data using the spectral envelope method. J. Process Control 2007, 17, 143–155. [Google Scholar] [CrossRef]
- Yuan, T.; Qin, S.J. Root cause diagnosis of plant-wide oscillations using Granger causality. J. Process Control 2014, 24, 450–459. [Google Scholar] [CrossRef]
- Zhong, X.; Xu, Y.; Liu, Y.; Wu, X.; Zhao, D.; Zheng, Y.; Jiang, J.; Deng, Z.; Fu, X.; Li, X. Root cause analysis and diagnosis of solid oxide fuel cell system oscillations based on data and topology-based model. Appl. Energy 2020, 267, 114968. [Google Scholar] [CrossRef]
- Xu, S.; Baldea, M.; Edgar, T.F.; Wojsznis, W.; Blevins, T.; Nixon, M. Root Cause Diagnosis of Plant-Wide Oscillations Based on Information Transfer in the Frequency Domain. Ind. Eng. Chem. Res. 2016, 55, 1623–1629. [Google Scholar] [CrossRef]
- Lindner, B.; Auret, L.; Bauer, M.; Groenewald, J.W.D. Comparative analysis of Granger causality and transfer entropy to present a decision flow for the application of oscillation diagnosis. J. Process Control 2019, 79, 72–84. [Google Scholar] [CrossRef]
- Bauer, M.; Cox, J.W.; Caveness, M.H.; Downs, J.J.; Thornhill, N.F. Finding the direction of disturbance propagation in a chemical process using transfer entropy. IEEE Trans. Control Syst. Technol. 2007, 15, 12–21. [Google Scholar] [CrossRef] [Green Version]
- Cao, L.J.; Chua, K.S.; Chong, W.K.; Lee, H.P.; Gu, Q.M. A comparison of PCA, KPCA and ICA for dimensionality reduction in support vector machine. Neurocomputing 2003, 55, 321–336. [Google Scholar] [CrossRef]
- Sun, H.; Lv, G.; Mo, J.; Lv, X.; Du, G.; Liu, Y. Application of KPCA combined with SVM in Raman spectral discrimination. Optik 2019, 184, 214–219. [Google Scholar] [CrossRef]
- He, Y.; Pang, Y.; Zhang, Q.; Jiao, Z.; Chen, Q. Comprehensive evaluation of regional clean energy development levels based on principal component analysis and rough set theory. Renew. Energ. 2018, 122, 643–653. [Google Scholar] [CrossRef]
- He, J.; Shang, P. Comparison of transfer entropy methods for financial time series. Physica A 2017, 482, 772–785. [Google Scholar] [CrossRef]
- Mao, X.; Shang, P. Transfer entropy between multivariate time series. Commun. Nonlinear Sci. Numer. Simul. 2017, 47, 338–347. [Google Scholar] [CrossRef]
- Song, X.; Taamouti, A. A Better Understanding of Granger Causality Analysis: A Big Data Environment. Oxf. Bull. Econ. Stat. 2019, 81, 911–936. [Google Scholar] [CrossRef]
- Lee, C.Y.; Lee, S.J.; Hung, Y.M.; Hsieh, C.T.; Chang, Y.M.; Huang, Y.T.; Lin, J.T. Integrated microsensor for real-time microscopic monitoring of local temperature, voltage and current inside lithium ion battery. Sens. Actuator A-Phys. 2017, 253, 59–68. [Google Scholar] [CrossRef]
Variable Name | Variable Descriptions |
---|---|
T1 | Flue gas inlet temperature of heat exchanger |
T2 | Flue gas outlet temperature of heat exchanger |
T3 | Air inlet temperature of heat exchanger |
T4 | Air outlet temperature of heat exchanger |
T5 | Air inlet temperature of stack |
T6 | Fuel outlet temperature of stack |
T7 | Air outlet temperature of stack |
T8 | Fuel inlet temperature of stack |
T9 | Inlet temperature of burner |
T10 | Outlet temperature of burner |
T11 | Flue gas inlet temperature of reformer |
T12 | Flue gas outlet temperature of reformer |
T13 | Flue inlet temperature of reformer |
T14 | Flue outlet temperature of reformer |
Result | T9 | CH4 Pressure | Stack Voltage | Air Bypass Flow | T13 | |
---|---|---|---|---|---|---|
Reason | ||||||
T9 | 0 | −0.2748 | 0.0998 | −0.0196 | −0.0307 | |
CH4 pressure | 0.2748 | 0 | 0.4390 | 0.0222 | 0.0761 | |
Stack voltage | −0.0998 | −0.4390 | 0 | −0.0457 | −0.1210 | |
Air bypass flow | 0.0196 | −0.0222 | 0.0457 | 0 | 0.0089 | |
T13 | 0.0307 | −0.0761 | 0.1210 | −0.0089 | 0 |
Reason | T9 | CH4 Pressure | Stack Voltage | Air Bypass Flow | T13 | |
---|---|---|---|---|---|---|
Result | ||||||
T9 | 0 | 0.1298 | 0.0140 | 0.0007 | 0.0448 | |
CH4 pressure | 0.0013 | 0 | 0.0182 | 0.0009 | 0.0626 | |
Stack voltage | 0.0074 | 0.4458 | 0 | 0.0003 | 0.0148 | |
Air bypass flow | 0.0034 | 0.0048 | 0.0006 | 0 | 0.0007 | |
T13 | 0.0271 | 0.0635 | 0.0023 | 0.0005 | 0 |
Reason | T9 | CH4 Pressure | Stack Voltage | Air Bypass flow | T13 | |
---|---|---|---|---|---|---|
Result | ||||||
T9 | / | 0 | 5.8785 × 10−10 | 0.9902 | 0 | |
CH4 pressure | 0.8904 | / | 7.2053 × 10−14 | 0.9702 | 0 | |
Stack voltage | 0.0003 | 0 | / | 0.9999 | 1.0889 × 10−10 | |
Air bypass flow | 0.1681 | 0.0240 | 0.9956 | / | 0.9917 | |
T13 | 0 | 0 | 0.5288 | 0.9968 | / |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, X.; Liu, Y.; Li, X. Source Diagnosis of Solid Oxide Fuel Cell System Oscillation Based on Data Driven. Energies 2020, 13, 4069. https://doi.org/10.3390/en13164069
Fu X, Liu Y, Li X. Source Diagnosis of Solid Oxide Fuel Cell System Oscillation Based on Data Driven. Energies. 2020; 13(16):4069. https://doi.org/10.3390/en13164069
Chicago/Turabian StyleFu, Xiaowei, Yanlin Liu, and Xi Li. 2020. "Source Diagnosis of Solid Oxide Fuel Cell System Oscillation Based on Data Driven" Energies 13, no. 16: 4069. https://doi.org/10.3390/en13164069
APA StyleFu, X., Liu, Y., & Li, X. (2020). Source Diagnosis of Solid Oxide Fuel Cell System Oscillation Based on Data Driven. Energies, 13(16), 4069. https://doi.org/10.3390/en13164069