A Review of Battery Technology in CubeSats and Small Satellite Solutions
Abstract
:1. Introduction
2. Battery Types for Small Satellites
2.1. Primary Batteries
2.2. Secondary Batteries
3. Battery Suitability and Safety
3.1. Suitability for Space Environment
3.1.1. Space Radiation
- Total ionizing dose (TID): over time, it’s cumulative impact leads to a component degradation.
- Displacements damage dose (DDD): atoms can be knocked out of their original location.
- Single events effects (SEEs): causing upsets/latchups/transients in electronics.
- Deep dielectric charging: penetration of dielectrics by an energetic electron leading to a discharge, which damages circuits and materials.
3.1.2. Vacuum
3.1.3. Temperature
3.1.4. Vibration and Shocks
3.2. Safety Requirements and Flight Acceptance
3.2.1. On-ground Handling and Transportation
3.2.2. Qualification and Flight Acceptance
3.2.3. Passivation
4. Mission Requirements on Batteries
5. Market Status
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- CDS. CubeSat Design Specification. California Polytechnic State University, 2015. Available online: https://www.cubesat.org/s/cds_rev13_final2.pdf (accessed on 29 June 2020).
- GomSpace. Available online: https://gomspace.com/ (accessed on 27 May 2020).
- ISIS. Available online: https://www.isispace.nl/ (accessed on 27 May 2020).
- Woellert, K.; Ehrenfreund, P.; Ricco, A.J.; Hertzfeld, H. Cubesats: Cost-Effective Science and Technology Platforms for Emerging and Developing Nations. Adv. Space Res. 2011, 47, 663–684. [Google Scholar] [CrossRef]
- Kulu, E. Nanosats Database. Available online: https://www.nanosats.eu/ (accessed on 16 June 2020).
- DelPozzo, S.; Williams, C. Nano/Microsatellite Market Forecast, 10th ed.; SpaceWorks Enterprises: Washington, DC, USA, 2020. [Google Scholar]
- Villela, T.; Costa, C.A.; Brandão, A.M.; Bueno, F.T.; Leonardi, R. Towards the Thousandth CubeSat: A Statistical Overview. Int. J. Aerosp. Eng. 2019, 2019, 1–13. [Google Scholar] [CrossRef]
- Camps, A. Nanosatellites and Applications to Commercial and Scientific Missions. In Ionospheric and Atmospheric Threats for GNSS and Satellite Telecommunications; IntechOpen: London, UK, 2019; Volume i, p. 13. [Google Scholar] [CrossRef] [Green Version]
- Saeed, N.; Elzanaty, A.; Almorad, H.; Dahrouj, H.; Al-Naffouri, T.Y.; Alouini, M.-S. CubeSat Communications: Recent Advances and Future Challenges. IEEE Commun. Surv. Tutor. 2020, 1–24. [Google Scholar] [CrossRef]
- Bouwmeester, J.; Guo, J. Survey of Worldwide Pico- and Nanosatellite Missions, Distributions and Subsystem Technology. Acta Astronaut. 2010, 67, 854–862. [Google Scholar] [CrossRef]
- Rao, G.M.; Pandipati, R.C. Satellites: Batteries. In Encyclopedia of Electrochemical Power Sources; Elseiver: Amsterdam, The Netherlands, 2009; pp. 323–337. [Google Scholar]
- Kopacz, J.R.; Herschitz, R.; Roney, J. Small Satellites an Overview and Assessment. Acta Astronaut. 2020, 170, 93–105. [Google Scholar] [CrossRef]
- Pearson, C.; Thwaite, C.; Russel, N. The Use of Small Cell Lithium-Ion Batteries for Small Satellite Applications. In Proceedings of the 18th Annual AIAA/USU Conference on Small Satellites, Logan, UT, USA, 9–12 August 2004; pp. 1–11. [Google Scholar]
- Navarathinam, N.; Lee, R.; Chesser, H. Characterization of Lithium-Polymer Batteries for CubeSat Applications. Acta Astronaut. 2011, 68, 1752–1760. [Google Scholar] [CrossRef]
- Chin, K.B.; Brandon, E.J.; Bugga, R.V.; Smart, M.C.; Jones, S.C.; Krause, F.C.; West, W.C.; Bolotin, G.G. Energy Storage Technologies for Small Satellite Applications. Proc. IEEE 2018, 106, 419–428. [Google Scholar] [CrossRef]
- Uno, M.; Ogawa, K.; Takeda, Y.; Sone, Y.; Tanaka, K.; Mita, M.; Saito, H. Development and On-Orbit Operation of Lithium-Ion Pouch Battery for Small Scientific Satellite “REIMEI”. J. Power Sources 2011, 196, 8755–8763. [Google Scholar] [CrossRef]
- Vanessa, A.; Jacky, C.; Hyvert, J.; Aurelie, G.; Paul, P.J.; Stephane, R.; Yannick, B. MP XLR Battery Range for Constellation. In Proceedings of the 2019 European Space Power Conference (ESPC), Juan-les-Pins, Côte d’Azur, France, 30 September–4 October 2019; pp. 1–8. [Google Scholar] [CrossRef]
- Jacky, C.; Stephane, R.; Yannick, B. VES16 Battery Range: Every Space Application Has a VES16 Solution. In Proceedings of the 2019 European Space Power Conference (ESPC), Juan-les-Pins, Côte d’Azur, France, 30 September–4 October 2019. [Google Scholar]
- 18650batterystore. Available online: https://www.18650batterystore.com/ (accessed on 29 May 2020).
- Poghosyan, A.; Golkar, A. CubeSat Evolution: Analyzing CubeSat Capabilities for Conducting Science Missions. Prog. Aerosp. Sci. 2017, 88, 59–83. [Google Scholar] [CrossRef]
- Gave, G.; Borthomieu, Y.; Lagattu, B.; Planchat, J.-P. Evaluation of a Low Temperature Li-Ion Cell for Space. Acta Astronaut. 2004, 54, 559–563. [Google Scholar] [CrossRef]
- Farmakis, F.; Georgoulas, N.; Karafyllidis, I.; Amoiridis, I.; Elmasides, C.; Balomenou, S.; Tsiplakides, D.; Nestoridi, M. High Specific Energy Lithium Cells for Space Exploration. E3S Web Conf. 2017, 16, 08003. [Google Scholar] [CrossRef] [Green Version]
- Chin, K.B.; Smart, M.C.; Brandon, E.J.; Bolotin, G.S.; Palmer, N.K.; Katz, S.; Flynn, J.A. Li-Ion Battery and Super-Capacitor Hybrid Energy System for Low Temperature SmallSat Applications Conference on Small Satellites. In Proceedings of the Proceedings of the 28th AIAA/USU Conference on Small Satellites, Logan, UT, USA, 4–7 August 2014; pp. 1–7. [Google Scholar]
- Luo, J.; Zhang, W.; Yuan, H.; Jin, C.; Zhang, L.; Huang, H.; Liang, C.; Xia, Y.; Zhang, J.; Gan, Y.; et al. Pillared Structure Design of MXene with Ultralarge Interlayer Spacing for High-Performance Lithium-Ion Capacitors. ACS Nano 2017, 11, 2459–2469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akio, K.; Shuhei, O. In-Orbit Demonstration and Preliminary Study on the Applicability of Lithium-Ion Capacitor to Spacecrafts. In Proceedings of the 2019 European Space Power Conference (ESPC), Juan-les-Pins, Côte d’Azur, France, 30 September–4 October 2019. [Google Scholar]
- Nestoridi, M.; Barde, H. Beyond Lithium-Ion: Lithium-Sulphur Batteries for Space? E3S Web Conf. 2017, 16, 08005. [Google Scholar] [CrossRef] [Green Version]
- Samaniego, B.; Carla, E.; O’Neill, L.; Nestoridi, M. High Specific Energy Lithium Sulfur Cell for Space Application. E3S Web Conf. 2017, 16, 08006. [Google Scholar] [CrossRef] [Green Version]
- Mourembles, D.; Buergler, B.; Gajewski, L.; Cooke, A.; Barchasz, C. Li-S Cells for Space Applications (LISSA). In Proceedings of the 2019 European Space Power Conference (ESPC), Juan-les-Pins, Côte d’Azur, France, 30 September–4 October 2019; pp. 1–5. [Google Scholar] [CrossRef]
- Borthomieu, Y.; Biensan, P.; Nechev, K.; Peres, J.-P. Next Generation of Space Battery Using Solid State Batteries (SSB). In Proceedings of the 2019 European Space Power Conference (ESPC), Juan-les-Pins, Côte d’Azur, France, 30 September–4 October 2019. [Google Scholar]
- Beutl, A.; Zhang, N.; Jahn, M.; Nestoridi, M. All-Solid State Batteries for Space Exploration. In Proceedings of the 2019 European Space Power Conference (ESPC), Juan-les-Pins, Côte d’Azur, France, 30 September–4 October 2019; pp. 1–8. [Google Scholar] [CrossRef]
- Lyman, P.; Olson, J.; Feaver, T. Application of Emerging Structural Energy Storage Technology to Small Satellite Systems. In Proceedings of the Proceedings of the 18th Annual AIAA/USU Conference on Small Satellites, Logan, UT, USA, 9–12 August 2004. [Google Scholar]
- ESA-ESTEC. Space Engineering: Space Environment (ECSS-E-ST-10-04C). ESA Reuqirements and Standards Division, 2008; p. 198. Available online: https://ecss.nl/standard/ecss-e-st-10-04c-space-environment (accessed on 29 June 2020).
- Barth, J.L. Space and Atmospheric Environments: From Low Earth Orbits to Deep Space. In Protection of Materials and Structures from Space Environment; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2003; pp. 7–29. [Google Scholar] [CrossRef] [Green Version]
- Selčan, D.; Kirbiš, G.; Kramberger, I. Nanosatellites in LEO and beyond: Advanced Radiation Protection Techniques for COTS-Based Spacecraft. Acta Astronaut. 2017, 131, 131–144. [Google Scholar] [CrossRef]
- Sinclair, D.; Dyer, J. Radiation Effects and COTS Parts in SmallSats. In Proceedings of the 27th Annual AIAA/USU Conference on Small Satellites, Logan, UT, USA, 12–15 August 2013. [Google Scholar]
- Samwel, S.W.; El-Aziz, E.A.; Garrett, H.B.; Hady, A.A.; Ibrahim, M.; Amin, M.Y. Space Radiation Impact on Smallsats during Maximum and Minimum Solar Activity. Adv. Space Res. 2019, 64, 239–251. [Google Scholar] [CrossRef]
- Qiu, J.; He, D.; Sun, M.; Li, S.; Wen, C.; Hattrick-Simpers, J.; Zheng, Y.F.; Cao, L. Effects of Neutron and Gamma Radiation on Lithium-Ion Batteries. Nucl. Instrum. Methods Phys. Res. Sect. B 2015, 345, 27–32. [Google Scholar] [CrossRef]
- Tan, C.; Leung, K.Y.; Liu, D.X.; Canova, M.; Downing, R.G.; Co, A.C.; Cao, L.R. Gamma Radiation Effects on Li-Ion Battery Electrolyte in Neutron Depth Profiling for Lithium Quantification. J. Radioanal. Nucl. Chem. 2015, 305, 675–680. [Google Scholar] [CrossRef]
- Tan, C.; Lyons, D.J.; Pan, K.; Leung, K.Y.; Chuirazzi, W.C.; Canova, M.; Co, A.C.; Cao, L.R. Radiation Effects on the Electrode and Electrolyte of a Lithium-Ion Battery. J. Power Sources 2016, 318, 242–250. [Google Scholar] [CrossRef]
- Ratnakumar, B.V.; Smart, M.C.; Whitcanack, L.D.; Davies, E.D.; Chin, K.B.; Deligiannis, F.; Surampudi, S. Behavior of Li-Ion Cells in High-Intensity Radiation Environments. J. Electrochem. Soc. 2004, 151, A652. [Google Scholar] [CrossRef]
- Ratnakumar, B.V.; Smart, M.C.; Whitcanack, L.D.; Davies, E.D.; Chin, K.B.; Deligiannis, F.; Surampudi, S. Behavior of Li-Ion Cells in High-Intensity Radiation Environments: II. Sony/AEA/ComDEV Cells. J. Electrochem. Soc. 2005, 152, A357. [Google Scholar] [CrossRef]
- Bausier, F.; Nestoridi, M.; Samaniego, B.; Simola, J.; Wolahan, A.; Austin, J.; Soares, T. Spacecraft Electrical Passivation: From Study to Reality. E3S Web Conf. 2017, 16, 13002. [Google Scholar] [CrossRef] [Green Version]
- ESA-ESTEC. Space Engineering Li-Ion Battery Testing Handbook (ECSS-E-HB-20-02A); ESA Reuqirements and Standards Division: Noordwijk, The Netherlands, 2015; pp. 1–31. [Google Scholar]
- European Space Components Coordination. Total Dose Steady-State Irradiation Test Method Escc Basic Specification No. 22900. Available online: http://escies.org/escc-specs/published/22900.pdf (accessed on 27 May 2020).
- ESA-ESTEC. Space Product Assurance Radiation Hardness Assurance–EEE Components (ECSS-Q-ST-60-15C). 2012. Available online: https://ecss.nl/standard/ecss-q-st-60-15c-radiation-hardness-assurance-eee-components-1-october-2012/ (accessed on 27 May 2020).
- Initiative, N.C.L. CubeSat 101: Basic Concepts and Processes for First-Time CubeSat Developers. NASA 2017, 2017, 96. [Google Scholar]
- ESA-ESTEC. Space Product Assurance Thermal Vacuum Outgassing Test for the Screening of Space Materials (ECSS-Q-ST-70-02C). 2008. Available online: https://ecss.nl/standard/ecss-q-st-70-02c-thermal-vacuum-outgassing-test-for-the-screening-of-space-materials/ (accessed on 27 May 2020).
- Jeevarajan, J. Requirements for Flight Certification and Acceptance of Commercial off the Shelf (Cots) Lithium-Ion (Li-Ion) Batteries (JSC 66548); Engineering Directorate Energy, Systems Division, NASA: Washington, DC, USA, 2013; pp. 1–24.
- Clarke, A.; Buckle, R. Identification of COTS Cells to Meet Space Market Segment Requirements. In Proceedings of the 2019 European Space Power Conference (ESPC), Juan-les-Pins, Côte d’Azur, France, 30 September–4 October 2019; pp. 1–4. [Google Scholar] [CrossRef]
- Motohata, T.; Shimizu, T.; Masui, H.; Cho, M. Development of a Testing Standard of COTS Lithium-Ion Batteries for Nano-Satellite. In Proceedings of the 65th International Astronautical Congress (IAC), Toronto, Canada, 29 September–3 October 2014. [Google Scholar]
- ESA Reuqirements and Standards Division. Space Engineering: Testing (ECSS-E-ST-10-03C). Available online: https://ecss.nl/standard/ecss-e-st-10-03c-testing/ (accessed on 27 May 2020).
- ESA/ESTEC. Tailoring of ECSS Engineering Standards for In-Orbit Demonstration CubeSat Projects. 2013. Available online: https://copernicus-masters.com/wp-content/uploads/2017/03/IOD_CubeSat_ECSS_Eng_Tailoring_Iss1_Rev3.pdf (accessed on 27 May 2020).
- United Nations. Recommendations on the Transport of Dangerous Goods, Manual of Tests and Criteria ST/SG/AC.10/11/Rev.5. Available online: http://www.unece.org/index.php?id=41869 (accessed on 27 May 2020).
- Bandhauer, T.M.; Garimella, S.; Fuller, T.F. A Critical Review of Thermal Issues in Lithium-Ion Batteries. J. Electrochem. Soc. 2011, 158, R1. [Google Scholar] [CrossRef]
- Carré, A.; Ruiz, R.A. Overview of Current Safety Requirements for the On-Ground Handling and Transportation of Li-Ion Cells and Batteries for Space Applications. In Proceedings of the 2019 European Space Power Conference (ESPC), Juan-les-Pins, Côte d’Azur, France, 30 September–4 October 2019. [Google Scholar]
- Engineering Directorate Energy Systems Division, NASA. Crewed Space Vehicle Battery Safety Requirements (JSC 20793 Rev D). Available online: https://standards.nasa.gov/standard/jsc/jsc-20793 (accessed on 27 May 2020).
- Space Systems—Space Debris Mitigation Requirements, ISO 24113. Available online: https://www.iso.org/standard/72383.html (accessed on 27 May 2020).
- Aouizerate, M.; Samaniego, B.; Bausier, F.; Nestoridi, M. Spacecraft Battery Passivation. In Proceedings of the 2019 European Space Power Conference (ESPC), Juan-les-Pins, Côte d’Azur, France, 30 September–4 October 2019. [Google Scholar]
- Doughty, D.H. Li-Ion Battery Abuse Tolerance Testing—An Overview. Available online: https://www.yumpu.com/en/document/view/3098930/li-ion-battery-abuse-tolerance-testing-an-overview (accessed on 27 May 2020).
- Roth, E.; Doughty, D. Thermal Abuse Performance of High-Power 18650 Li-Ion Cells. J. Power Sources 2004, 128, 308–318. [Google Scholar] [CrossRef]
- Borthomieu, Y. Satellite Lithium-Ion Batteries. In Lithium-Ion Batteries; Elsevier: Amsterdam, The Netherlands, 2014; pp. 311–344. [Google Scholar] [CrossRef]
- Krause, F.C.; Loveland, J.A.; Smart, M.C.; Brandon, E.J.; Bugga, R.V. Implementation of Commercial Li-Ion Cells on the MarCO Deep Space CubeSats. J. Power Sources 2020, 449, 227544. [Google Scholar] [CrossRef]
- Sweeting, M.N. Modern Small Satellites-Changing the Economics of Space. Proc. IEEE 2018, 106, 343–361. [Google Scholar] [CrossRef]
- ESA/ESTEC. Product and Quality Assurance Requirements for In-Orbit Demonstration CubeSat Projects. 2013. Available online: http://emits.sso.esa.int/emits-doc/ESTEC/AO8352_AD2_IOD_CubeSat_PQA_Reqts_Iss1_Rev1.pdf (accessed on 27 May 2020).
- Buckle, R.; Roberts, S. Review of Commercial Cells For Space Applications. E3S Web Conf. 2017, 16, 17006. [Google Scholar] [CrossRef] [Green Version]
- Buckle, R. Life Testing of COTS Cells for Optimum Battery Sizing. In Proceedings of the 2019 European Space Power Conference (ESPC), Juan-les-Pins, Côte d’Azur, France, 30 September–4 October 2019; pp. 1–7. [Google Scholar] [CrossRef]
- Lee, J.-W.; Anguchamy, Y.K.; Popov, B.N. Simulation of Charge-Discharge Cycling of Lithium-Ion Batteries under Low-Earth-Orbit Conditions. J. Power Sources 2006, 162, 1395–1400. [Google Scholar] [CrossRef]
- Notani, S.; Bhattacharya, S. Flexible Electrical Power System Controller Design and Battery Integration for 1U to 12U CubeSats. In Proceedings of the 2011 IEEE Energy Conversion Congress and Exposition, Phoenix, AZ, USA, 17–22 September 2011; pp. 3633–3640. [Google Scholar] [CrossRef]
- Bugryniec, P. CubeSat: The Need for More Power to Realise Telecommunications Overview of CubeSats Aims & Objectives. 2016. Available online: http://www.energystorage-cdt.ac.uk/outputs/cohort-2/Bugryniec+mini+project+report.pdf (accessed on 27 May 2020).
- Small Spacecraft Technology State of the Art. Available online: https://www.nasa.gov/sites/default/files/atoms/files/small_spacecraft_technology_state_of_the_art_2015_tagged.pdf (accessed on 27 May 2020).
- Gary, Q.; Boris, S.; Christophe, K.; Benoît, M. Attitude Control: A Key Factor during the Design of Low-Thrust Propulsion for CubeSats. Acta Astronaut. 2020, 176, 40–51. [Google Scholar] [CrossRef]
- Barré, A.; Deguilhem, B.; Grolleau, S.; Gérard, M.; Suard, F.; Riu, D. A Review on Lithium-Ion Battery Ageing Mechanisms and Estimations for Automotive Applications. J. Power Sources 2013, 241, 680–689. [Google Scholar] [CrossRef] [Green Version]
- Fortescue, P.; Swinerd, G.; Stark, J. Spacecraft Systems Engineering; Fortescue, P., Swinerd, G., Stark, J., Eds.; John Wiley & Sons, Ltd.: Chichester, UK, 2011. [Google Scholar] [CrossRef]
- Bard, F.; Carré, A.; Fernandez, P.; Nestoridi, M.; Alia, S.; Datta, A.; Durodola, O. In-Orbit Trend Analysis of Galileo Satellites for Power Sources Degradation Estimation. E3S Web Conf. 2017, 16, 13005. [Google Scholar] [CrossRef] [Green Version]
- Pérez, L.L.; Koch, P.; Walker, R. GOMX-4—The Twin European Mission for IOD Purposes. In Proceedings of the 32nd Annual AIAA/USU Conference on Small Satellites, Logan, UT, USA, 6–9 August 2018. [Google Scholar]
- Cubesat - Suppliers. Available online: https://www.cubesat.org/suppliers (accessed on 16 June 2020).
- Satsearch. The Global Marketplace for the Space. Available online: https://satsearch.co/products/categories/satellite/power/battery/products?page=1 (accessed on 16 June 2020).
- Nykvist, B.; Sprei, F.; Nilsson, M. Assessing the Progress toward Lower Priced Long Range Battery Electric Vehicles. Energy Policy 2019, 124, 144–155. [Google Scholar] [CrossRef]
Launch Year | Mission Name | Mission Type | Size | Frequency Band | No. of Cubesats | Status |
---|---|---|---|---|---|---|
2018 | KIPP | Providing global connectivity | 3 U | Ku-Band | 2 | Operational |
2018 | Radix | Optical communication test | 6 U | Optical | 1 | Successfully completed |
2015 | GOMX-3 | Aircraft signal acquisition | 3 U | X-Band | 1 | Successfully completed |
2018 | Lemur-2 | Weather forecasting | 3 U | - | 100 | Operational |
2011 | DICE | Ionosphere Monitoring | 1.5 U | UHF-Band | 2 | Successfully completed |
2003 | QuakeSat | Earthquakes forecasting | 3 U | UHF-Band | 1 | Successfully completed |
- | OLFAR | Low radiations analysis | - | VHF | 50–1000 | Under review |
2010 | RAX | Space weather forecasting | 3 U | S-Band | 2 | Successfully completed |
2018 | MarCO | Relaying for deep space | 6 U | UHF and X-Band | 2 | Not Operational |
2017 | ISARA | Bandwidth communication test | 3 U | Ka-Band | 1 | Operational |
2015 | AeroCube OCSD | Optical communication speed test | 1.5 U | Optical | 2 | Successfully completed |
2017 | ASTERIA | Attitude control test | 6 U | S-Band | 1 | Operational |
2019 | Starlink | Ubiquitous Internet connectivity | Not a CubeSat | X-band andKuband | 42,000 | Partially operational |
2019 | OneWeb | Ubiquitous Internet connectivity | Not a CubeSat | Ku-band | 650 | Partially operational |
2019 | Telesat LEO | Ubiquitous Internet connectivity | Not a CubeSat | Ka-band | 200 | Partially operational |
2019 | Kuiper | High-speed broadband services | Not a CubeSat | Ka-band | 3236 | Partially operational |
Full Name | Chemical Abbreviation | Short Name | Characteristics |
---|---|---|---|
Lithium manganese oxide | LiMn2O4 | LMO | Low cost, high discharge rate capability, good safety, low specific energy. |
Lithium manganese nickel | LiNiMnCoO2 | NMC | Low cost, high specific energy, good discharge rate capability, low resistance, good safety. |
Lithium nickel cobalt aluminum oxide | LiNiCoAlO2 | NCA | The highest specific energy and cycle life, lower discharge rate capability, good safety. |
Lithium nickel cobalt oxide | LiNiCoO2 | NCO | Rarely used |
Lithium cobalt oxide | LiCoO2 | LCO | Expensive, low specific energy, lower discharge rate capability, poor safety. |
Lithium iron phosphate | LiFePO4 | LFP | Highest discharge rate capability, low specific energy, excellent safety. |
Frequency (Hz) | ASD (G2/Hz) | dB/OCT | Grms |
---|---|---|---|
20 | 0.02880 | ||
40 | 0.02880 | 0.00 | 0.76 |
70 | 0.07200 | 4.93 | 1.43 |
700 | 0.07200 | 0.00 | 6.89 |
2000 | 0.01872 | −3.86 | 9.65 |
Safety International Standards | |||||||
---|---|---|---|---|---|---|---|
UL 1642 | UN 38.3 | IEC 62133 | IEC 62281 | IEC 60086 Part 4 | AFSPC MAN 91–710 | ECSS E-HB-20-02A | |
Electrical Tests | |||||||
External short circuit | X | X | X | X | X | X | X |
Abnormal charge | X | X | X | X | X | X | |
Forced discharge | X | X | X | X | X | X | X |
Mechanical Tests | |||||||
Crush | X | X | X | ||||
Impact | X | X | X | ||||
Shock | X | X | X | X | X | ||
Vibration | X | X | X | X | X | ||
Environmental Tests | |||||||
Heating | X | X | X | ||||
Temperature Cycling | X | X | X | X | X | ||
Low pressure (altitude) | X | X | X | X | X | ||
Additional Specialized Tests | |||||||
Projectile (fire) | X | ||||||
Drop | X | X | X | X | |||
Continuous low charge charging | X | ||||||
Internal short circuit | X | X | X | ||||
X: Applicable |
Test | Cell Level | Pack Level | |||
---|---|---|---|---|---|
Qualification | LAT | FAT | Qualification | FAT | |
Standard capacity and/or energy measurements | X | X | X | X | X |
Internal resistance measurement | X | X | X | X | X |
AC impedance measurement | X | X | X | ||
Self-discharge test | X | X | X | ||
Charge retention test | X | X | |||
Cell rate capability | X | X | |||
Cell EMF measurement | X | X | |||
Battery magnetic moment measurement | X | ||||
Battery corona test | X | ||||
Low level sine vibration | X | X | X | X | |
High level sine vibration | X | X | |||
Random vibration | X | X | X | X | |
Shock | X | X | X | ||
Thermal vacuum | X | X | X | X | |
Leak | X | X | X | X | |
Hermeticity | X | X | X | X | |
Radiation | X | ||||
Calendar | X | ||||
Real time cycling | X | X | |||
Accelerated cycling | X | X | |||
Wear-out | X | X | |||
Overcharge | X | X | X | ||
Overdischarge | X | X | X | ||
Short-circuit | X | X | X | ||
Vent | X | X | |||
Burst | X | X | |||
Protective devices | X | X | X | ||
Balancing system | X | X | X | X |
Requirement | LEO | MEO | GEO |
---|---|---|---|
Lifetime (years) | 2–15 (5 in average) | up to 18 | up to 14 |
Cycles per year | 5500 | 90 | 180 |
Charge current (C-rate) | 0.33 | 0.07–0.1 | 0.05–0.1 |
Cycle depth-of-discharge (DOD) (%) | 10–40 | 60–80 | 60–80 |
Discharge current linked to cycle DOD (C-rate) | 0.5–0.7 | 0.5–0.7 | 0.5–0.7 |
Temperature range (°C) | 0–40 | 10–30 eclipse season 0–30 solstice periods | 10–30 eclipse season 0–30 solstice periods |
Resistance to radiation | Low | High (crossing/proximity of Van Allen belt) | high (crossing Van Allen belt) |
Importance of gravimetric energy density | Low | High | High |
Compliance with ESA and NASA standards | Yes | Yes | yes |
BP or EPS | Battery Cell | Energy Capacity (Wh) | Volumetric Energy Density (Wh/l) | Gravimetric Energy Density (Wh/kg) | Self-Consumption | Heaters | Cell Balancing | Protection | Price |
---|---|---|---|---|---|---|---|---|---|
EPS | Li-pol 1.5AhLi- pol 1.9 Ah | 11 22 14 | 182 196 133 | 138 157 108 | 15 mW | OC | 4400 E | ||
EPS | Li-pol 1.5 Ah iPod® | 11 22 | 72 92 | 71 105 | 150 µA (CPU asleep) 2 mA (CPU active) | OC, OV, UV | |||
EPS | 18650 Li-ion 2.6 Ah | 19.24 | 91 | 96 | 160 mW | yes | OC, OV, UV | ||
EPS | 18650 Li-ion 3.15 Ah | 22.5 45.0 | 96 254 | 122 125 | yes | OC (thermal),reverse current, | 3300–7500 E | ||
EPS | Super capacitors | ||||||||
EPS | 20.4 | 70 | 20 mA @3.7V (normal operation) | 3300 E | |||||
EPS | With external battery pack up to 161 Wh | 150 mW | yes | yes | OC, OV, UV | ||||
EPS | Li-ion LiFePo4 | UV | |||||||
EPS | Li-ion LiFePo4 | 39.8 | 143 | 111 | 0.16 W (max) | yes | OC | 2335 E | |
EPS | 10.2 | 49 | 20 mA @3.7V (normal operation) | 2500 E | |||||
EPS | 42 84 | 42 65 | |||||||
EPS | 3.2 Ah | 35 | OC, OV, UV | 2500 E | |||||
EPS | Cylindrical Li-ion LiFePO4 3300 mAh | 30 | 64 | 61 | yes | yes | OC, OV, UV | ||
EPS | 20 36 70 150 | 83 80 58 83 | 50 55 41 57 | no | |||||
BP | Li-pol | 30 40 80 | 161 169 163 | 112 119 119 | < 0.1 W < 0.1 W < 0.2 W (quiescent) | Yes (to maintain 1–6.5 °C) | yes | OC, OV, UV | |
BP | Li-pol 1.5Ah | 22.2 44.4 | 343 343 | 193 207 | OC (thermal) | 3500–6300 E | |||
BP | Li-pol 1.5Ah | 350 | 333 | - | Nanotubes to route heat from payload | OV, UV | 3000–40,000 E | ||
BP | Li-pol | 19.2 | 116 | 110 | |||||
BP | 18650 Li-ion 2.6 Ah | 38.5 | 212 | 149 | yes | ||||
BP | 18650 Li-ion 2.6 Ah | 77 | 235 | 154 | 4 mA (operating) 15 µA (switched off) | yes | SC, OC | ||
BP | 45 | 245 | 110 | Yes (8W @16V) | OC, OV, UV | ||||
BP | 18650 Li-ion 3.1Ah | 42 | 194 | 175 | yes | ||||
BP | 18650 Li-ion | 40 | 184 | 129 | <TBD µA (quiescent) | yes | OC, OV, UV, OT, UT | ||
BP | 18650 Li-ion, 3 Ah | 86.4 64.8 86.4 | 179 134 179 | 125 94 125 | 3 µA (non-operating) 20 mA (operating) 2.5 mA (sleep) 20 µA (in undervoltage) | 8 W 16 W 8 W yes | yes | OC, OV, UV, OT | |
BP | 18650 Li-ion | 69 92 69 | yes | yes | SC, OV, UV | From 4500 E |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Knap, V.; Vestergaard, L.K.; Stroe, D.-I. A Review of Battery Technology in CubeSats and Small Satellite Solutions. Energies 2020, 13, 4097. https://doi.org/10.3390/en13164097
Knap V, Vestergaard LK, Stroe D-I. A Review of Battery Technology in CubeSats and Small Satellite Solutions. Energies. 2020; 13(16):4097. https://doi.org/10.3390/en13164097
Chicago/Turabian StyleKnap, Vaclav, Lars Kjeldgaard Vestergaard, and Daniel-Ioan Stroe. 2020. "A Review of Battery Technology in CubeSats and Small Satellite Solutions" Energies 13, no. 16: 4097. https://doi.org/10.3390/en13164097
APA StyleKnap, V., Vestergaard, L. K., & Stroe, D. -I. (2020). A Review of Battery Technology in CubeSats and Small Satellite Solutions. Energies, 13(16), 4097. https://doi.org/10.3390/en13164097