Do Tense Geopolitical Factors Drive Crude Oil Prices?
Abstract
:1. Introduction
2. Methods and Data
2.1. Time-Varying Copula
2.2. Marginal Distribution
2.3. Estimation
2.4. Variables and Data Source
3. Empirical Results
3.1. Marginal Distribution Model Results
3.2. Dynamic Correlation between GPR and Crude Oil Prices
3.3. Dynamic Correlation between GPR Sub-Indices and Crude Oil Prices
4. Further Discussion
4.1. Dynamic Correlations in Different Political Environments
4.2. Granger Causality Test
5. Conclusions and Policy Recommendations
Author Contributions
Funding
Conflicts of Interest
Appendix A
Abbreviation | Full Name |
---|---|
GPR | Geopolitical Risk |
GPT | Geopolitical Threats |
GPA | Geopolitical Acts |
WTI | West Texas Intermediate |
OPEC | Organization of the Petroleum Exporting Countries |
ARCH | Autoregressive Conditional Heteroscedasticity |
GARCH | Generalized Autoregressive Conditional Heteroscedasticity |
AR | Autoregressive |
MA | Moving Average |
ARMA | Autoregressive Moving Average |
ARIMA | Autoregressive Integrated Moving Average |
AIC | Akaike Information Criteria |
ML | Maximum Likelihood |
References
- Salameh, M.G. Where Is the Crude Oil Price Headed? 2014. Available online: http://dx.doi.org/10.2139/ssrn.2502056 (accessed on 28 March 2020).
- Azzimonti, M. Partisan conflict and private investment. J. Monet. Econ. 2018, 93, 114–131. [Google Scholar] [CrossRef] [Green Version]
- Monge, M.; Gil-Alana, L.A.; de Gracia, F.P. Crude oil price behaviour before and after military conflicts and geopolitical events. Energy 2017, 120, 79–91. [Google Scholar] [CrossRef]
- Liao, G.; Li, Z.; Du, Z.; Liu, Y. The heterogeneous interconnections between supply or demand side and oil risks. Energies 2019, 12, 2226. [Google Scholar] [CrossRef] [Green Version]
- Caldara, D.; Iacoviello, M. Measuring geopolitical risk. In International Finance Discussion Paper; FRB: Washington, DC, USA, 2018. [Google Scholar]
- Zhang, X.; Yu, L.; Wang, S.; Lai, K.K. Estimating the impact of extreme events on crude oil price: An EMD-based event analysis method. Energy Econ. 2009, 31, 768–778. [Google Scholar] [CrossRef]
- Dey, A.K.; Edwards, A.; Das, K.P. Determinants of High Crude Oil Price: A Nonstationary Extreme Value Approach. J. Stat. Theory Pract. 2020, 14, 4. [Google Scholar] [CrossRef]
- Ji, Q.; Liu, B.-Y.; Nehler, H.; Uddin, G.S. Uncertainties and extreme risk spillover in the energy markets: A time-varying copula-based CoVaR approach. Energy Econ. 2018, 76, 115–126. [Google Scholar] [CrossRef]
- Bilgin, M.H.; Gozgor, G.; Karabulut, G. The impact of world energy price volatility on aggregate economic activity in developing Asian economies. Singap. Econ. Rev. 2015, 60, 1550009. [Google Scholar] [CrossRef]
- Bildirici, M.E.; Badur, M.M. The effects of oil prices on confidence and stock return in China, India and Russia. Quant. Financ. Econ. 2018, 2, 884–903. [Google Scholar] [CrossRef]
- Li, Z.; Zhong, J. Impact of economic policy uncertainty shocks on China’s financial conditions. Financ. Res. Lett. 2019, 35, 101303. [Google Scholar] [CrossRef]
- Rasoulinezhad, E.; Taghizadeh-Hesary, F.; Sung, J.; Panthamit, N. Geopolitical risk and energy transition in russia: Evidence from ARDL bounds testing method. Sustainability 2020, 12, 2689. [Google Scholar] [CrossRef] [Green Version]
- Taghizadeh-Hesary, F.; Yoshino, N.; Mohammadi Hossein Abadi, M.; Farboudmanesh, R. Response of macro variables of emerging and developed oil importers to oil price movements. J. Asia Pac. Econ. 2016, 21, 91–102. [Google Scholar] [CrossRef] [Green Version]
- Gaibulloev, K.; Sandler, T. Growth consequences of terrorism in Western Europe. Kyklos 2008, 61, 411–424. [Google Scholar] [CrossRef] [Green Version]
- Ji, Q.; Li, J.; Sun, X. Measuring the interdependence between investor sentiment and crude oil returns: New evidence from the CFTC’s disaggregated reports. Financ. Res. Lett. 2019, 30, 420–425. [Google Scholar] [CrossRef]
- Noguera-Santaella, J. Geopolitics and the oil price. Econ. Model. 2016, 52, 301–309. [Google Scholar] [CrossRef]
- Liu, Y.; Dong, H.; Failler, P. The oil market reactions to OPEC’s announcements. Energies 2019, 12, 3238. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Dong, H.; Huang, Z.; Failler, P. Asymmetric effects on risks of Virtual Financial Assets (VFAs) in different regimes: A Case of Bitcoin. Quant. Financ. Econ. 2018, 2, 860–883. [Google Scholar] [CrossRef]
- Balcilar, M.; Bonato, M.; Demirer, R.; Gupta, R. Geopolitical risks and stock market dynamics of the BRICS. Econ. Syst. 2018, 42, 295–306. [Google Scholar] [CrossRef] [Green Version]
- Antonakakis, N.; Gupta, R.; Kollias, C.; Papadamou, S. Geopolitical risks and the oil-stock nexus over 1899–2016. Financ. Res. Lett. 2017, 23, 165–173. [Google Scholar] [CrossRef] [Green Version]
- Aysan, A.F.; Demir, E.; Gozgor, G.; Lau, C.K.M. Effects of the geopolitical risks on Bitcoin returns and volatility. Res. Int. Bus. Financ. 2019, 47, 511–518. [Google Scholar] [CrossRef] [Green Version]
- Cunado, J.; Gupta, R.; Lau, C.K.M.; Sheng, X. Time-varying impact of geopolitical risks on oil prices. Def. Peace Econ. 2019, 1–15. [Google Scholar] [CrossRef]
- Bilgin, M.H.; Gozgor, G.; Karabulut, G. How Do Geopolitical Risks Affect Government Investment? An Empirical Investigation. Def. Peace Econ. 2018, 1–15. [Google Scholar] [CrossRef]
- Gupta, R.; Gozgor, G.; Kaya, H.; Demir, E. Effects of geopolitical risks on trade flows: Evidence from the gravity model. Eurasian Econ. Rev. 2019, 9, 515–530. [Google Scholar] [CrossRef]
- Demiralay, S.; Kilincarslan, E. The impact of geopolitical risks on travel and leisure stocks. Tour. Manag. 2019, 75, 460–476. [Google Scholar] [CrossRef]
- Mei, D.; Ma, F.; Liao, Y.; Wang, L. Geopolitical risk uncertainty and oil future volatility: Evidence from MIDAS models. Energy Econ. 2020, 86, 104624. [Google Scholar] [CrossRef]
- Benhmad, F. Modeling nonlinear Granger causality between the oil price and US dollar: A wavelet based approach. Econ. Model. 2012, 29, 1505–1514. [Google Scholar] [CrossRef]
- Zhong, J.; Wang, M.; Drakeford, B.; Li, T. Spillover effects between oil and natural gas prices: Evidence from emerging and developed markets. Green Financ. 2019, 1, 30–45. [Google Scholar] [CrossRef]
- Wolfe, M.H.; Rosenman, R. Bidirectional causality in oil and gas markets. Energy Econ. 2014, 42, 325–331. [Google Scholar] [CrossRef]
- Lee, C.-C.; Chiu, Y.-B. Nuclear energy consumption, oil prices, and economic growth: Evidence from highly industrialized countries. Energy Econ. 2011, 33, 236–248. [Google Scholar] [CrossRef]
- Cooke, B. Recent Food Prices Movements: A Time Series Analysis; Internationl Food Policy Research Institute: Washington, DC, USA, 2009; Volume 942. [Google Scholar]
- Bildirici, M.E.; Turkmen, C. Nonlinear causality between oil and precious metals. Resour. Policy 2015, 46, 202–211. [Google Scholar] [CrossRef]
- Brini, R.; Amara, M.; Jemmali, H. Renewable energy consumption, International trade, oil price and economic growth inter-linkages: The case of Tunisia. Renew. Sustain. Energy Rev. 2017, 76, 620–627. [Google Scholar] [CrossRef]
- Wen, F.; Min, F.; Zhang, Y.J.; Yang, C. Crude oil price shocks, monetary policy, and China’s economy. Int. J. Financ. Econ. 2019, 24, 812–827. [Google Scholar] [CrossRef]
- Ouyang, S.; Dong, H. Oil price pass-through into consumer and producer prices with monetary policy in China: Are there non-linear and mediating effects. Front. Energy Res. 2020, 8, 35. [Google Scholar]
- Dong, H.; Liu, Y.; Chang, J. The heterogeneous linkage of economic policy uncertainty and oil return risks. Green Financ. 2019, 1, 46–66. [Google Scholar] [CrossRef]
- Li, Z.; Liao, G.; Albitar, K. Does corporate environmental responsibility engagement affect firm value? The mediating role of corporate innovation. Bus. Strategy Environ. 2020, 29, 1045–1055. [Google Scholar] [CrossRef]
- Bal, D.P.; Rath, B.N. Nonlinear causality between crude oil price and exchange rate: A comparative study of China and India. Energy Econ. 2015, 51, 149–156. [Google Scholar]
- Su, C.-W.; Khan, K.; Tao, R.; Nicoleta-Claudia, M. Does geopolitical risk strengthen or depress oil prices and financial liquidity? Evidence from Saudi Arabia. Energy 2019, 187, 116003. [Google Scholar] [CrossRef]
- Ji, Q.; Liu, B.-Y.; Fan, Y. Risk dependence of CoVaR and structural change between oil prices and exchange rates: A time-varying copula model. Energy Econ. 2019, 77, 80–92. [Google Scholar] [CrossRef]
- Li, T.; Zhong, J.; Huang, Z. Potential dependence of financial cycles between emerging and developed countries: Based on ARIMA-GARCH Copula model. Emerg. Mark. Financ. Trade 2019, 1–14. [Google Scholar] [CrossRef]
- Hemche, O.; Jawadi, F.; Maliki, S.B.; Cheffou, A.I. On the study of contagion in the context of the subprime crisis: A dynamic conditional correlation–multivariate GARCH approach. Econ. Model. 2016, 52, 292–299. [Google Scholar] [CrossRef]
- Sklar, A.; Sklar, A.; Sklar, C. Fonctions De Reprtition an Dimensions Et Leursmarges; de l’Institut Statistique de l’Université de Paris: Paris, France, 1959. [Google Scholar]
- Patton, A.J. Modelling asymmetric exchange rate dependence. Int. Econ. Rev. 2006, 47, 527–556. [Google Scholar] [CrossRef]
- Charles, A.; Darné, O. Forecasting crude-oil market volatility: Further evidence with jumps. Energy Econ. 2017, 67, 508–519. [Google Scholar] [CrossRef]
- Scheitrum, D.P.; Carter, C.A.; Revoredo-Giha, C. WTI and Brent futures pricing structure. Energy Econ. 2018, 72, 462–469. [Google Scholar] [CrossRef]
- Klein, T. Trends and contagion in WTI and Brent crude oil spot and futures markets-The role of OPEC in the last decade. Energy Econ. 2018, 75, 636–646. [Google Scholar] [CrossRef] [Green Version]
- Bai, X.; Lam, J.S.L. A copula-GARCH approach for analyzing dynamic conditional dependency structure between liquefied petroleum gas freight rate, product price arbitrage and crude oil price. Energy Econ. 2019, 78, 412–427. [Google Scholar] [CrossRef]
- Sahamkhadam, M.; Stephan, A.; Östermark, R. Portfolio optimization based on GARCH-EVT-Copula forecasting models. Int. J. Forecast. 2018, 34, 497–506. [Google Scholar] [CrossRef]
- Baker, S.R.; Bloom, N.; Davis, S.J. Measuring economic policy uncertainty. Q. J. Econ. 2016, 131, 1593–1636. [Google Scholar] [CrossRef]
- Huang, Y.; Luk, P. Measuring economic policy uncertainty in China. China Econ. Rev. 2020, 59, 101367. [Google Scholar] [CrossRef]
- Plourde, A.; Watkins, G.C. Crude oil prices between 1985 and 1994: How volatile in relation to other commodities? Resour. Energy Econ. 1998, 20, 245–262. [Google Scholar] [CrossRef]
- Zhang, Y.-J. Speculative trading and WTI crude oil futures price movement: An empirical analysis. Appl. Energy 2013, 107, 394–402. [Google Scholar] [CrossRef]
- Coleman, L. Explaining crude oil prices using fundamental measures. Energy Policy 2012, 40, 318–324. [Google Scholar] [CrossRef]
- Caldara, D.; Cavallo, M.; Iacoviello, M. Oil price elasticities and oil price fluctuations. J. Monet. Econ. 2019, 103, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Wen, F.; Xiao, J.; Xia, X.; Chen, B.; Xiao, Z.; Li, J. Oil prices and chinese stock market: Nonlinear causality and volatility persistence. Emerg. Mark. Financ. Trade 2019, 55, 1247–1263. [Google Scholar] [CrossRef]
- Liu, K.; Luo, C.; Li, Z. Investigating the risk spillover from crude oil market to BRICS stock markets based on Copula-POT-CoVaR models. Quant. Financ. Econ. 2019, 3, 754. [Google Scholar] [CrossRef]
Variable | Mean | Max. | Min. | Std. Dev. | Skew. | Kurt. | Obs. |
---|---|---|---|---|---|---|---|
Overall | |||||||
GPR | 85.849 | 545.09 | 23.7 | 65.334 | 2.951 | 15.924 | 393 |
GPT | 88.421 | 602.45 | 20.23 | 72.044 | 2.971 | 16.167 | 393 |
GPA | 72.689 | 496.89 | 11.09 | 59.074 | 3.869 | 23.122 | 393 |
BRENT | 46.666 | 132.72 | 9.82 | 32.643 | 0.858 | 2.532 | 393 |
WTI | 45.444 | 133.88 | 11.35 | 29.094 | 0.813 | 2.539 | 393 |
Tension | |||||||
GPR | 100.782 | 545.090 | 26.920 | 80.705 | 2.657 | 12.032 | 184 |
GPT | 105.231 | 602.450 | 24.320 | 89.582 | 2.630 | 11.937 | 184 |
GPA | 79.202 | 496.890 | 11.090 | 65.469 | 3.591 | 19.892 | 184 |
BRENT | 48.130 | 132.720 | 9.820 | 34.239 | 0.808 | 2.362 | 184 |
WTI | 46.713 | 133.880 | 11.350 | 30.413 | 0.784 | 2.463 | 184 |
Stabilization | |||||||
GPR | 72.641 | 268.580 | 23.700 | 44.178 | 1.674 | 6.199 | 208 |
GPT | 73.564 | 290.040 | 20.230 | 47.556 | 1.642 | 5.892 | 208 |
GPA | 66.871 | 473.730 | 13.270 | 52.412 | 4.136 | 26.599 | 208 |
BRENT | 45.505 | 123.260 | 11.110 | 31.217 | 0.882 | 2.654 | 208 |
WTI | 44.443 | 125.400 | 12.520 | 27.924 | 0.817 | 2.547 | 208 |
Variable | GPR | GPT | GPA | BRENT | WTI |
---|---|---|---|---|---|
−0.835 *** (0.263) | −0.85 *** (0.272) | −0.539 *** (0.084) | 0.003 (0.066) | 0.039 (0.12) | |
0.057 (0.198) | −0.012 (0.181) | 0.599 *** (0.037) | 0.906 *** (0.067) | −0.162 (1.282) | |
−0.509 *** (0.191) | −0.449 *** (0.173) | −1.17 *** (0.001) | −0.664 *** (0.084) | 0.416 (1.28) | |
−0.212 * (0.122) | −0.247 ** (0.108) | 0.191 *** (0.001) | −0.272 *** (0.058) | 0.059 (0.319) | |
117.495 ** (49.876) | 106.206 ** (49.272) | 1057.199 ** (470.339) | 0.144 * (0.085) | 0.114 * (0.069) | |
0.45 *** (0.13) | 0.414 *** (0.12) | 0.639 * (0.357) | 0.253 *** (0.05) | 0.194 *** (0.039) | |
0.549 *** (0.113) | 0.585 *** (0.112) | 0.106 (0.117) | 0.746 *** (0.047) | 0.805 *** (0.035) | |
shape | 2.98 *** (0.32) | 3.008 *** (0.323) | 2.558 *** (0.333) | 12.206 ** (5.089) | 8.806 *** (2.86) |
Null Hypothesis: | Obs. | Lag (month) | F-Statistic | Prob. | Sign. |
---|---|---|---|---|---|
BRENT ⇏ GPR | 392 | 1 | 1.313 | 0.2526 | Cannot reject |
GPR ⇏ BRENT | 1 | 4.33847 | 0.0379 | Reject | |
WTI ⇏ GPR | 392 | 1 | 1.21456 | 0.2711 | Cannot reject |
GPR ⇏ WTI | 1 | 3.94318 | 0.0478 | Reject | |
BRENT ⇏ GPT | 392 | 1 | 1.63395 | 0.2019 | Cannot reject |
GPT ⇏ BRENT | 1 | 4.17903 | 0.0416 | Reject | |
WTI ⇏ GPT | 392 | 1 | 1.4533 | 0.2287 | Cannot reject |
GPT ⇏ WTI | 1 | 3.71016 | 0.0548 | Reject | |
BRENT ⇏ GPA | 392 | 1 | 0.22511 | 0.6354 | Cannot reject |
GPA ⇏ BRENT | 1 | 2.45973 | 0.1176 | Cannot reject | |
WTI ⇏ GPA | 392 | 1 | 0.09376 | 0.7596 | Cannot reject |
GPA ⇏ WTI | 1 | 2.63677 | 0.1052 | Cannot reject | |
BRENT ⇏ GPR | 183 | 1 | 0.77072 | 0.3812 | Cannot reject |
GPR ⇏ BRENT | 1 | 0.99295 | 0.3204 | Cannot reject | |
WTI ⇏ GPR | 183 | 1 | 0.56853 | 0.4518 | Cannot reject |
GPR ⇏ WTI | 1 | 1.14897 | 0.2852 | Cannot reject | |
BRENT ⇏ GPT | 183 | 1 | 0.84317 | 0.3597 | Cannot reject |
GPT ⇏ BRENT | 1 | 1.08404 | 0.2992 | Cannot reject | |
WTI ⇏ GPT | 183 | 1 | 0.59835 | 0.4402 | Cannot reject |
GPT ⇏ WTI | 1 | 1.25532 | 0.264 | Cannot reject | |
BRENT ⇏ GPA | 183 | 1 | 0.2487 | 0.6186 | Cannot reject |
GPA ⇏ BRENT | 1 | 0.12509 | 0.724 | Cannot reject | |
WTI ⇏ GPA | 183 | 1 | 0.15276 | 0.6964 | Cannot reject |
GPA ⇏ WTI | 1 | 0.14529 | 0.7035 | Cannot reject | |
BRENT ⇏ GPR | 207 | 1 | 0.94348 | 0.3325 | Cannot reject |
GPR ⇏ BRENT | 1 | 0.54775 | 0.4601 | Cannot reject | |
WTI ⇏ GPR | 207 | 1 | 0.93918 | 0.3336 | Cannot reject |
GPR ⇏ WTI | 1 | 0.3836 | 0.5364 | Cannot reject | |
BRENT ⇏ GPT | 207 | 1 | 1.12381 | 0.2904 | Cannot reject |
GPT ⇏ BRENT | 1 | 0.82501 | 0.3648 | Cannot reject | |
WTI ⇏ GPT | 207 | 1 | 1.10528 | 0.2944 | Cannot reject |
GPT ⇏ WTI | 1 | 0.63606 | 0.4261 | Cannot reject | |
BRENT ⇏ GPA | 207 | 1 | 0.27616 | 0.5998 | Cannot reject |
GPA ⇏ BRENT | 1 | 0.0806 | 0.7768 | Cannot reject | |
WTI ⇏ GPA | 207 | 1 | 0.18129 | 0.6707 | Cannot reject |
GPA ⇏ WTI | 1 | 0.16424 | 0.6857 | Cannot reject |
Null Hypothesis: | Obs. | Lag (month) | F-Statistic | Prob. | Sign. |
---|---|---|---|---|---|
BRENT ⇏ GPR | 391 | 2 | 2.29025 | 0.1026 | Cannot reject |
GPR ⇏ BRENT | 2 | 1.43025 | 0.2405 | Cannot reject | |
WTI ⇏ GPR | 391 | 2 | 1.86755 | 0.1559 | Cannot reject |
GPR ⇏ WTI | 2 | 1.39884 | 0.2481 | Cannot reject | |
BRENT ⇏ GPT | 391 | 2 | 2.57553 | 0.0774 | Reject |
GPT ⇏ BRENT | 2 | 1.36463 | 0.2567 | Cannot reject | |
WTI ⇏ GPT | 391 | 2 | 1.98638 | 0.1386 | Cannot reject |
GPT ⇏ WTI | 2 | 1.31018 | 0.2710 | Cannot reject | |
BRENT ⇏ GPA | 391 | 2 | 0.32557 | 0.7223 | Cannot reject |
GPA ⇏ BRENT | 2 | 0.98266 | 0.3752 | Cannot reject | |
WTI ⇏ GPA | 391 | 2 | 0.32404 | 0.7234 | Cannot reject |
GPA ⇏ WTI | 2 | 1.48253 | 0.2284 | Cannot reject | |
BRENT ⇏ GPR | 182 | 2 | 1.87035 | 0.1571 | Cannot reject |
GPR ⇏ BRENT | 2 | 0.47908 | 0.6202 | Cannot reject | |
WTI ⇏ GPR | 182 | 2 | 1.27094 | 0.2831 | Cannot reject |
GPR ⇏ WTI | 2 | 0.60043 | 0.5497 | Cannot reject | |
BRENT ⇏ GPT | 182 | 2 | 1.78862 | 0.1702 | Cannot reject |
GPT ⇏ BRENT | 2 | 0.60359 | 0.5480 | Cannot reject | |
WTI ⇏ GPT | 182 | 2 | 1.17516 | 0.3112 | Cannot reject |
GPT ⇏ WTI | 2 | 0.74320 | 0.4771 | Cannot reject | |
BRENT ⇏ GPA | 182 | 2 | 0.95770 | 0.3858 | Cannot reject |
GPA ⇏ BRENT | 2 | 0.28308 | 0.7538 | Cannot reject | |
WTI ⇏ GPA | 182 | 2 | 0.67582 | 0.5100 | Cannot reject |
GPA ⇏ WTI | 2 | 0.19757 | 0.8209 | Cannot reject | |
BRENT ⇏ GPR | 206 | 2 | 1.05852 | 0.3489 | Cannot reject |
GPR ⇏ BRENT | 2 | 1.61006 | 0.2024 | Cannot reject | |
WTI ⇏ GPR | 206 | 2 | 1.00058 | 0.3695 | Cannot reject |
GPR ⇏ WTI | 2 | 1.11911 | 0.3286 | Cannot reject | |
BRENT ⇏ GPT | 206 | 2 | 1.04075 | 0.3551 | Cannot reject |
GPT ⇏ BRENT | 2 | 1.81407 | 0.1656 | Cannot reject | |
WTI ⇏ GPT | 206 | 2 | 1.13876 | 0.3223 | Cannot reject |
GPT ⇏ WTI | 2 | 1.29969 | 0.2749 | Cannot reject | |
BRENT ⇏ GPA | 206 | 2 | 0.32544 | 0.7226 | Cannot reject |
GPA ⇏ BRENT | 2 | 0.39268 | 0.6758 | Cannot reject | |
WTI ⇏ GPA | 206 | 2 | 0.10420 | 0.9011 | Cannot reject |
GPA ⇏ WTI | 2 | 0.43008 | 0.6511 | Cannot reject |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, F.; Huang, Z.; Zhong, J.; Albitar, K. Do Tense Geopolitical Factors Drive Crude Oil Prices? Energies 2020, 13, 4277. https://doi.org/10.3390/en13164277
Li F, Huang Z, Zhong J, Albitar K. Do Tense Geopolitical Factors Drive Crude Oil Prices? Energies. 2020; 13(16):4277. https://doi.org/10.3390/en13164277
Chicago/Turabian StyleLi, Fen, Zhehao Huang, Junhao Zhong, and Khaldoon Albitar. 2020. "Do Tense Geopolitical Factors Drive Crude Oil Prices?" Energies 13, no. 16: 4277. https://doi.org/10.3390/en13164277
APA StyleLi, F., Huang, Z., Zhong, J., & Albitar, K. (2020). Do Tense Geopolitical Factors Drive Crude Oil Prices? Energies, 13(16), 4277. https://doi.org/10.3390/en13164277