Gaussian Processes Proxy Model with Latent Variable Models and Variogram-Based Sensitivity Analysis for Assisted History Matching
Abstract
:1. Introduction
2. Materials and Methods
2.1. Forward GP Model (GPFS)
2.2. Vars-Based Sensitivity Analysis and Bayesian Optimization
2.3. Inverse GPLVM Model (GPLVMIS)
3. Results
3.1. Synthetic Data
3.2. Punq-S3 Reservoir
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
AHM | Assisted History Matching |
GP | Gaussian Process |
VARS | Variogram Analysis of Response Surface |
GP-VARS | Gaussian Processes proxy models and Variogram Analysis of Response Surface-based sensitivity analysis |
GPFS | Forward GP solution |
GPIS | Inverse GP solution |
LMV | Local Misfit Value |
GMV | Global Misfit Value |
GPLVM | Gaussian Process Latent Variable Model |
GPR | Gaussian Process Regression |
GPLVM-VARS | Gaussian Processes proxy models with Latent Variable Models and VARS-based sensitivity analysis |
GPLVMIS | Gaussian Processes Latent Variable Model-based Inverse Solution |
References
- Verga, F.; Cancelliere, M.; Viberti, D. Improved application of assisted history matching techniques. J. Pet. Sci. Eng. 2013, 109, 327–347. [Google Scholar] [CrossRef]
- Hou, J.; Zhou, K.; Zhang, X.S.; Kang, X.D.; Xie, H. A review of closed-loop reservoir management. Pet. Sci. 2015, 12, 114–128. [Google Scholar] [CrossRef] [Green Version]
- Jaber, A.K.; Al-Jawad, S.N.; Alhuraishawy, A.K. A review of proxy modeling applications in numerical reservoir simulation. Arab. J. Geosci. 2019, 12, 1–16. [Google Scholar] [CrossRef]
- Foroud, T.; Seifi, A.; AminShahidi, B. Assisted history matching using artificial neural network based global optimization method—Applications to Brugge field and a fractured Iranian reservoir. J. Pet. Sci. Eng. 2014, 123, 46–61. [Google Scholar] [CrossRef]
- Oliver, D.S.; Chen, Y. Recent progress on reservoir history matching: A review. Comput. Geosci. 2011, 15, 185–221. [Google Scholar] [CrossRef]
- Tripoppoom, S.; Xie, J.; Yong, R.; Wu, J.; Yu, W.; Sepehrnoori, K.; Miao, J.; Chang, C.; Li, N. Investigation of different production performances in shale gas wells using assisted history matching: Hydraulic fractures and reservoir characterization from production data. Fuel 2020, 267, 117097. [Google Scholar] [CrossRef]
- Hamdi, H.; Couckuyt, I.; Sousa, M.C.; Dhaene, T. Gaussian Processes for history-matching: Application to an unconventional gas reservoir. Comput. Geosci. 2017, 21, 267–287. [Google Scholar] [CrossRef]
- Jung, S.; Lee, K.; Park, C.; Choe, J. Ensemble-Based Data Assimilation in Reservoir Characterization: A Review. Energies 2018, 11, 445. [Google Scholar] [CrossRef] [Green Version]
- Kang, B.; Yang, H.; Lee, K.; Choe, J. Ensemble Kalman Filter With Principal Component Analysis Assisted Sampling for Channelized Reservoir Characterization. J. Energy Resour. Technol. 2017, 139, 032907. [Google Scholar] [CrossRef]
- Luo, X.; Bhakta, T. Automatic and adaptive localization for ensemble-based history matching. J. Pet. Sci. Eng. 2020, 184, 106559. [Google Scholar] [CrossRef]
- Evensen, G. Analysis of iterative ensemble smoothers for solving inverse problems. Comput. Geosci. 2018, 22, 885–908. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Kim, S.; Park, C.; Lee, K. Construction of prior models for ES-MDA by a deep neural network with a stacked autoencoder for predicting reservoir production. J. Pet. Sci. Eng. 2020, 187, 106800. [Google Scholar] [CrossRef]
- Dickstein, F.; Goldfeld, P.; Pfeiffer, G.T.; Pinto, R.V. Truncated conjugate gradient and improved LBFGS and TSVD for history matching. Comput. Geosci. 2018, 22, 309–327. [Google Scholar] [CrossRef]
- Mendivelso, J.; Thankachan, S.V.; Pinzón, Y. A brief history of parameterized matching problems. Discret. Appl. Math. 2020, 274, 103–115. [Google Scholar] [CrossRef]
- Schulze-Riegert, R.W.; Axmann, J.K.; Haase, O.; Rian, D.T.; You, Y.L. Evolutionary Algorithms Applied to History Matching of Complex Reservoirs. SPE Reserv. Eval. Eng. 2002, 5, 163–173. [Google Scholar] [CrossRef]
- Zhang, D.; Shen, A.; Jiang, X.; Kang, Z. Efficient history matching with dimensionality reduction methods for reservoir simulations. Simul. Trans. Soc. Model. Simul. Int. 2018, 94, 739–751. [Google Scholar] [CrossRef]
- Park, H.Y.; Datta-Gupta, A.; King, M.J. Handling conflicting multiple objectives using Pareto-based evolutionary algorithm during history matching of reservoir performance. J. Pet. Sci. Eng. 2015, 125, 48–66. [Google Scholar] [CrossRef]
- Shahkarami, A.; Shahab D. Mohaghegh, V.G.; Haghighat, S.A. Artificial Intelligence (AI) Assisted History Matching. In Proceedings of the SPE Western North American and Rocky Mountain Joint Meeting, Denver, CO, USA, 17–18 April 2014. [Google Scholar]
- Shahkarami, A.; Mohaghegh, S.D.; Hajizadeh, Y. Assisted history matching using pattern recognition technology. Int. J. Oil Gas Coal Technol. 2018, 17, 412–442. [Google Scholar] [CrossRef]
- Ertekin, T.; Sun, Q. Artificial Intelligence Applications in Reservoir Engineering: A Status Check. Energies 2019, 12, 2897. [Google Scholar] [CrossRef] [Green Version]
- Vo, H.X.; Durlofsky, L.J. A New Differentiable Parameterization Based on Principal Component Analysis for the Low-Dimensional Representation of Complex Geological Models. Math. Geosci. 2014, 46, 775–813. [Google Scholar] [CrossRef]
- Esmaeili, M.; Ahmadi, M.; Kazemi, A. Kernel-based two-dimensional principal component analysis applied for parameterization in history matching. J. Pet. Sci. Eng. 2020, 191, 107134. [Google Scholar] [CrossRef]
- Aïfa, T. Neural network applications to reservoirs: Physics-based models and data models. J. Pet. Sci. Eng. 2014, 123, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Costa, L.A.N.; Maschio, C.; Schiozer, D.J. Application of artificial neural networks in a history matching process. J. Pet. Sci. Eng. 2014, 123, 30–45. [Google Scholar] [CrossRef]
- Maschio, C.; Schiozer, D.J. Bayesian history matching using artificial neural network and Markov Chain Monte Carlo. J. Pet. Sci. Eng. 2014, 123, 62–71. [Google Scholar] [CrossRef]
- Liu, Y.; Sun, W.; Durlofsky, L.J. A Deep-Learning-Based Geological Parameterization for History Matching Complex Models. Math. Geosci. 2019, 51, 725–766. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Park, C.; Lee, K.; Ahn, S.; Jang, I. Deep neural network coupled with distance-based model selection for efficient history matching. J. Pet. Sci. Eng. 2020, 185, 106658. [Google Scholar] [CrossRef]
- Riazi, S.H.; Zargar, G.; Baharimoghadam, M.; Moslemi, B.; Darani, E.S. Fractured reservoir history matching improved based on artificial intelligent. Petroleum 2016, 2, 344–360. [Google Scholar] [CrossRef]
- Rana, S.; Ertekin, T.; King, G.R. An efficient assisted history matching and uncertainty quantification workflow using Gaussian processes proxy models and variogram based sensitivity analysis: GP-VARS. Comput. Geosci. 2018, 114, 73–83. [Google Scholar] [CrossRef]
- Casella, G. An Introduction to Empirical Bayes Data Analysis. Am. Stat. 1985, 39, 83–87. [Google Scholar]
- Lawrence, N. Probabilistic Non-linear Principal Component Analysis with Gaussian Process Latent Variable Models. J. Mach. Learn. Res. 2005, 6, 1783–1816. [Google Scholar]
- Rasmussen, C.E.; Williams, C.K.I. Gaussian Processes for Machine Learning; The MIT Press: Cambridge, MA, USA, 2006. [Google Scholar]
- Razavi, S.; Gupta, H.V. A new framework for comprehensive, robust, and efficient global sensitivity analysis: 1. Theory. Water Resour. Res. 2016, 52, 423–439. [Google Scholar] [CrossRef] [Green Version]
- Floris, F.J.; Bush, M.D.; Cuypers, M.; Roggero, F.; Syversveen, A.R. Methods for quantifying the uncertainty of production forecasts: A comparative study. Pet. Geosci. 2001, 7, S87–S96. [Google Scholar] [CrossRef]
- Gao, G.; Zafari, M.; Reynolds, A. Quantifying Uncertainty for the PUNQ-S3 Problem in a Bayesian Setting With RML and EnKF. In Proceedings of the SPE Reservoir Simulation Symposium, Houston, TX, USA, 31 January–2 February 2005. [Google Scholar]
- Jiang, X.; Gao, J.; Wang, T.; Zheng, L. Supervised Latent Linear Gaussian Process Latent Variable Model for Dimensionality Reduction. IEEE Trans. Syst. Man Cybern. Part Cybern. 2012, 42, 1620–1632. [Google Scholar] [CrossRef] [PubMed]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, D.; Zhang, Y.; Jiang, B.; Jiang, X.; Kang, Z. Gaussian Processes Proxy Model with Latent Variable Models and Variogram-Based Sensitivity Analysis for Assisted History Matching. Energies 2020, 13, 4290. https://doi.org/10.3390/en13174290
Zhang D, Zhang Y, Jiang B, Jiang X, Kang Z. Gaussian Processes Proxy Model with Latent Variable Models and Variogram-Based Sensitivity Analysis for Assisted History Matching. Energies. 2020; 13(17):4290. https://doi.org/10.3390/en13174290
Chicago/Turabian StyleZhang, Dongmei, Yuyang Zhang, Bohou Jiang, Xinwei Jiang, and Zhijiang Kang. 2020. "Gaussian Processes Proxy Model with Latent Variable Models and Variogram-Based Sensitivity Analysis for Assisted History Matching" Energies 13, no. 17: 4290. https://doi.org/10.3390/en13174290
APA StyleZhang, D., Zhang, Y., Jiang, B., Jiang, X., & Kang, Z. (2020). Gaussian Processes Proxy Model with Latent Variable Models and Variogram-Based Sensitivity Analysis for Assisted History Matching. Energies, 13(17), 4290. https://doi.org/10.3390/en13174290