Pyrolysis of Rapeseed Oil Press Cake and Steam Gasification of Solid Residues
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experiments
3. Results and Discussion
3.1. Products from the RPC Char during Steam Gasification
3.2. Kinetics of RPC Char Gasification
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Nomenclature
A | pre-exponential factor, s−1 |
Ar | argon |
CH4 | methane |
CO | carbon monoxide |
CO2 | carbon dioxide |
E | activation energy, kJ⋅mole−1 |
H/C | hydrogen to carbon ratio |
H2 | hydrogen |
H2S | hydrogene sulfure |
ks | first order reaction rate constant, s−1 |
k | reaction rate constant independent of H2O concentration, s−1 |
KOH | potassium hydroxide |
m0 | initial weights of the sample during the reaction, g |
m | final mass of the sample at the end of gasification, g |
mF | actual mass of the sample during the reaction, g |
MS | mass spectrometer |
n | order of reaction,- |
NaOH | rapeseed press cake |
rs | intrinsic reaction rate, s−1 or m⋅s−1 |
RPC | rapeseed press cake |
RPM | random pore model |
SCM | shrinking core model |
SNG | synthetic natural gas |
T | temperature, K |
t | time, s |
TGA | thermogravimetric analyser |
X | conversion,- |
yg | concentration of H2O in the gas stream, mol. fraction |
WGS | water-gas shift reaction |
VM | volumetric model |
Greek | symbols |
ψ | structural parameter |
References
- Fukuda, H.; Kondo, A.; Noda, H. Biodiesel fuel production by transesterification of oils. J. Biosci. Bioeng. 2001, 92, 405–416. [Google Scholar] [CrossRef]
- Leung, D.Y.C.; Wu, X.; Leung, M.K.H. A review on biodiesel production using catalyzed transesterification. Appl. Energy 2010, 87, 1083–1095. [Google Scholar] [CrossRef]
- Musa, I.A. The effects of alcohol to oil molar ratios and the type of alcohol on biodiesel production using transesterification process. Egypt. J. Pet. 2016, 25, 21–31. [Google Scholar] [CrossRef] [Green Version]
- Willems, P.; Kuipers, N.J.M.; De Haan, A.B. Hydraulic pressing of oilseeds: Experimental determination and modeling of yield and pressing rates. J. Food Eng. 2008, 89, 8–16. [Google Scholar] [CrossRef]
- Özçimen, D.; Karaosmanoǧlu, F. Production and characterization of bio-oil and biochar from rapeseed cake. Renew. Energy 2004, 29, 779–787. [Google Scholar] [CrossRef]
- Ucar, S.; Ozkan, A.R. Characterization of products from the pyrolysis of rapeseed oil cake. Bioresour. Technol. 2008, 99, 8771–8776. [Google Scholar] [CrossRef]
- Smets, K.; Adriaensens, P.; Reggers, G.; Schreurs, S.; Carleer, R.; Yperman, J. Flash pyrolysis of rapeseed cake: Influence of temperature on the yield and the characteristics of the pyrolysis liquid. J. Anal. Appl. Pyrolysis 2011, 90, 118–125. [Google Scholar] [CrossRef]
- David, E.; Kopac, J. Pyrolysis of rapeseed oil cake in a fixed bed reactor to produce bio-oil. J. Anal. Appl. Pyrolysis 2018, 134, 495–502. [Google Scholar] [CrossRef]
- Zhang, L.; Xu, C.; Champagne, P. Overview of recent advances in thermo-chemical conversion of biomass. Energy Convers. Manag. 2010, 51, 969–982. [Google Scholar] [CrossRef]
- Dhyani, V.; Bhaskar, T. A comprehensive review on the pyrolysis of lignocellulosic biomass. Renew. Energy 2018, 129, 695–716. [Google Scholar] [CrossRef]
- Onay, O.; Kockar, O.M. Slow, fast and flash pyrolysis of rapeseed. Renew. Energy 2003, 28, 2417–2433. [Google Scholar] [CrossRef]
- Al Arni, S. Comparison of slow and fast pyrolysis for converting biomass into fuel. Renew. Energy 2018, 124, 197–201. [Google Scholar] [CrossRef]
- Şensöz, S.; Yorgun, S.; Angin, D.; Çulcuoǧlu, E.; Özçimen, D.; Karaosmanoǧlu, F. Fixed bed pyrolysis of the rapeseed cake. Energy Sources 2001, 23, 873–876. [Google Scholar]
- David, E.; Kopač, J. Upgrading the characteristics of the bio-oil obtained from rapeseed oil cake pyrolysis through the catalytic treatment of its vapors. J. Anal. Appl. Pyrolysis 2019, 141, 104638. [Google Scholar] [CrossRef]
- Nowicki, L.; Siuta, D.; Markowski, M. Carbon Dioxide Gasification Kinetics of Char from Rapeseed Oil Press Cake. Energies 2020, 13, 2318. [Google Scholar] [CrossRef]
- Chaudhari, S.T.; Bej, S.K.; Bakhshi, N.N.; Dalai, A.K. Steam Gasification of Biomass-Derived Char for the Production of Carbon Monoxide-Rich Synthesis Gas. Energy Fuels 2001, 15, 736–742. [Google Scholar] [CrossRef]
- Chaudhari, S.T.; Dalai, A.K.; Bakhshi, N.N. Production of Hydrogen and/or Syngas (H2 + CO) via Steam Gasification of Biomass-Derived Chars. Energy Fuels 2003, 17, 1062–1067. [Google Scholar] [CrossRef]
- Motta, I.L.; Miranda, N.T.; Maciel Filho, R.; Wolf Maciel, M.R. Biomass gasification in fluidized beds: A review of biomass moisture content and operating pressure effects. Renew. Sustain. Energy Rev. 2018, 94, 998–1023. [Google Scholar] [CrossRef]
- Zhang, X.; Brown, R.C. Introduction to Thermochemical Processing of Biomass into Fuels, Chemicals, and Power. Thermochem. Process. Biomass 2019, 1–16. [Google Scholar] [CrossRef]
- van Steen, E.; Claeys, M. Fischer-Tropsch Catalysts for the Biomass-to-Liquid (BTL)-Process. Chem. Eng. Technol. 2008, 31, 655–666. [Google Scholar] [CrossRef]
- Bozzano, G.; Manenti, F. Efficient methanol synthesis: Perspectives, technologies and optimization strategies. Prog. Energy Combust. Sci. 2016, 56, 71–105. [Google Scholar] [CrossRef]
- Ruoppolo, G.; Miccio, F.; Brachi, P.; Picarelli, A.; Chirone, R. Fluidized bed gasification of biomass and biomass/coal pellets in oxygen and steam atmosphere. Chem. Eng. Trans. 2013, 32, 595–600. [Google Scholar]
- Pala, L.P.R.; Wang, Q.; Kolb, G.; Hessel, V. Steam gasification of biomass with subsequent syngas adjustment using shift reaction for syngas production: An Aspen Plus model. Renew. Energy 2017, 101, 484–492. [Google Scholar] [CrossRef]
- Dayton, D.C.; Turk, B.; Gupta, R. Syngas Cleanup, Conditioning, and Utilization. Thermochem. Process. Biomass 2019, 125–174. [Google Scholar]
- Rauch, R.; Hrbek, J.; Hofbauer, H. Biomass gasification for synthesis gas production and applications of the syngas. WIREs Energy Environ. 2014, 3, 343–362. [Google Scholar] [CrossRef]
- Kung, H.H. Deactivation of methanol synthesis catalysts—A review. Catal. Today 1992, 11, 443–453. [Google Scholar] [CrossRef]
- González, J.F.; Román, S.; Encinar, J.M.; Martínez, G. Pyrolysis of various biomass residues and char utilization for the production of activated carbons. J. Anal. Appl. Pyrolysis 2009, 85, 134–141. [Google Scholar] [CrossRef]
- Nowicki, L.; Ledakowicz, S. Comprehensive characterization of thermal decomposition of sewage sludge by TG–MS. J. Anal. Appl. Pyrolysis 2014, 110, 220–228. [Google Scholar] [CrossRef]
- Nowicki, L.; Markowski, M. Gasification of pyrolysis chars from sewage sludge. Fuel 2015, 143, 476–483. [Google Scholar] [CrossRef]
- Yan, F.; Luo, S.; Hu, Z.; Xiao, B.; Cheng, G. Hydrogen-rich gas production by steam gasification of char from biomass fast pyrolysis in a fixed-bed reactor: Influence of temperature and steam on hydrogen yield and syngas composition. Bioresour. Technol. 2010, 101, 5633–5637. [Google Scholar] [CrossRef]
- Morin, M.; Pécate, S.; Masi, E.; Hémati, M. Kinetic study and modelling of char combustion in TGA in isothermal conditions. Fuel 2017, 203, 522–536. [Google Scholar] [CrossRef] [Green Version]
- Blasi, C. Di Combustion and gasification rates of lignocellulosic chars. Prog. Energy Combust. Sci. 2009, 35, 121–140. [Google Scholar] [CrossRef]
- Nowicki, L.; Siuta, D.; Godala, M. Determination of the chemical reaction kinetics using isothermal reaction calorimetry supported by measurements of the gas production rate: A case study on the decomposition of formic acid in the heterogeneous Fenton reaction. Thermochim. Acta 2017, 653, 62–70. [Google Scholar] [CrossRef]
- Liu, G.; Benyon, P.; Benfell, K.E.; Bryant, G.W.; Tate, A.G.; Boyd, R.K.; Harris, D.J.; Wall, T.F. The porous structure of bituminous coal chars and its influence on combustion and gasification under chemically controlled conditions. Fuel 2000, 79, 617–626. [Google Scholar] [CrossRef]
- Everson, R.C.; Neomagus, H.W.J.P.; Kaitano, R.; Falcon, R.; du Cann, V.M. Properties of high ash coal-char particles derived from inertinite-rich coal: II. Gasification kinetics with carbon dioxide. Fuel 2008, 87, 3403–3408. [Google Scholar] [CrossRef]
Sample | Moisture | Volatiles | Fixed Carbon | Ash | C | H | N | S |
---|---|---|---|---|---|---|---|---|
RPC | 6.6 | 66.5 | 18.6 | 8.0 | 45.9 | 6.8 | 5.8 | 0.4 |
Char from RPC | - | - | 74.0 | 26.0 | 57.3 | 0.6 | 4.5 | 0.1 |
H2O Conc., mol % | Temperature, °C | Gas Product Composition, mol % | |||
---|---|---|---|---|---|
H2 | CH4 | CO | CO2 | ||
17 | 600–950 | 62 | 1 | 8 | 29 |
61 | 1 | 10 | 28 | ||
17 | 850 | 62 | 1 | 12 | 25 |
45 | 850 | 62 | 1 | 9 | 28 |
45 | 800 | 63 | 1 | 9 | 28 |
45 | 750 | 63 | 2 | 7 | 27 |
Model | A, s−1 | E, kJ⋅mol−1 | n,- | ψ, - | SSR, - |
---|---|---|---|---|---|
VM | 1.18⋅105 | 166.0 | 0.50 | - | 0.133 |
SCM | 3.93⋅105 | 187.7 | 0.61 | - | 0.255 |
RPM | 2.39⋅105 | 172.3 | 0.54 | 0.37 | 0.186 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nowicki, L.; Siuta, D.; Markowski, M. Pyrolysis of Rapeseed Oil Press Cake and Steam Gasification of Solid Residues. Energies 2020, 13, 4472. https://doi.org/10.3390/en13174472
Nowicki L, Siuta D, Markowski M. Pyrolysis of Rapeseed Oil Press Cake and Steam Gasification of Solid Residues. Energies. 2020; 13(17):4472. https://doi.org/10.3390/en13174472
Chicago/Turabian StyleNowicki, Lech, Dorota Siuta, and Maciej Markowski. 2020. "Pyrolysis of Rapeseed Oil Press Cake and Steam Gasification of Solid Residues" Energies 13, no. 17: 4472. https://doi.org/10.3390/en13174472
APA StyleNowicki, L., Siuta, D., & Markowski, M. (2020). Pyrolysis of Rapeseed Oil Press Cake and Steam Gasification of Solid Residues. Energies, 13(17), 4472. https://doi.org/10.3390/en13174472