Simulation Study of the Formation of Corrosive Gases in Coal Combustion in an Entrained Flow Reactor
Abstract
:1. Introduction
2. Reaction Model
2.1. Reaction Mechanism of Solid State Reactions
2.2. Kinetics of the Solid State Reactions
3. Experimental Setup
4. Numerical Setup
5. Results and Discussion
5.1. Temperature and Velocity
5.2. Main Species
5.3. Trace Species
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
Roman | |
X | mole fraction [-] |
p | pressure [Pa] |
R | ideal gas constant [8314 J/kmol K] |
T | temperature [K] |
A | pre-exponential factor |
E | activation energy [kJ/mol] |
k | rate constant |
D | difusion constant |
d | particle diameter [m] |
Greek | |
absorption coefficient [] | |
scattering coefficient [] | |
emissivity [-] | |
phase function [-] | |
Abbreviations | |
CFD | Computational Fluid Dynamics |
WSGG | weighted sum of gray gases |
DO | Discrete Ordinates |
RC | raw coal |
Vol-% | volume percent |
Subscripts | |
kin | kinetic |
diff | diffusion |
p | particle |
g | gas (species) |
s | solid |
ub | unburnt |
w | wall |
ch | chemical |
Appendix A
References
- British Petroleum. Statistical Review of World Energy 2019; British Petroleum: London, UK, 2019. [Google Scholar]
- Organization of the Petroleum Exporting Countries (OPEC). World Oil Outlook 2018; OPEC: Vienna, Austria, 2018. [Google Scholar]
- Uusitalo, M.A.; Vuoristo, P.M.J.; Mäntylä, T.A. High temperature corrosion of coatings and boiler steels in oxidizing chlorine-containing atmosphere. Mater. Sci. Eng. A 2003, 346, 168–177. [Google Scholar] [CrossRef]
- Young, D.J. High Temperature Oxidation and Corrosion of Metals; Elsevier: Amsterdam, The Netherlands, 2008. [Google Scholar]
- Jones, J.M.; Patterson, P.M.; Pourkashanian, M.; Williams, A.; Arenillas, A.; Rubiera, F.; Pis, J.J. Modelling nox formation in coal particle combustion at high temperature: An investigation of the devolatilisation kinetic factors. Fuel 1999, 78, 1171–1179. [Google Scholar] [CrossRef]
- Backreedy, R.I.; Habib, R.; Jones, J.M.; Pourkashanian, M.; Williams, A. An extended coal combustion model. Fuel 1999, 78, 1745–1754. [Google Scholar] [CrossRef]
- Authier, O.; Thunin, E.; Plion, P.; Schönnenbeck, C.; Leyssens, G.; Brilhac, J.F.; Porcheron, L. Kinetic study of pulverized coal devolatilization for boiler cfd modeling. Fuel 2014, 122, 254–260. [Google Scholar] [CrossRef]
- Zhou, C.R.; Sendt, K.; Haynes, B.S. Experimental and kinetic modelling study of h2s oxidation. Proc. Combust. Inst. 2013, 34, 625–632. [Google Scholar] [CrossRef]
- Vascellari, M.; Arora, R.; Pollack, M.; Hasse, C. Simulation of entrained flow gasification with advanced coal conversion submodels. Part 1: Pyrolysis. Fuel 2013, 113, 654–669. [Google Scholar] [CrossRef]
- Han, X.; Wei, X.; Schnell, U.; Hein, K.R. Detailed modeling of hybrid reburn/sncr processes for nox reduction in coal-fired furnaces. Combust. Flame 2003, 132, 374–386. [Google Scholar] [CrossRef]
- Wei, X.; Guo, X.; Li, S.; Han, X.; Schnell, U.; Scheffknecht, G.; Risio, B. Detailed modeling of nox and sox formation in co-combustion of coal and biomass with reduced kinetics. Energy Fuels 2012, 26, 3117–3124. [Google Scholar] [CrossRef]
- Lee, B.H.; Song, J.H.; Kim, R.G.; Kim, S.G.; Kim, Y.G.; Chang, Y.J.; Jeon, C.H. Simulation of the influence of the coal volatile matter content on fuel no emissions in a drop tube furnace. Energy Fuels 2010, 24, 4333–4340. [Google Scholar] [CrossRef]
- Belošević, S.; Tomanović, I.; Beljanski, V.; Tucaković, D.; Živanović, T. Numerical prediction of processes for clean and efficient combustion of pulverized coal in power plants. Appl. Therm. Eng. 2015, 74, 102–110. [Google Scholar] [CrossRef]
- Constenla, I.; Ferrín, J.L.; Saavedra, L. Numerical study of a 350 mwe tangentially fired pulverized coal furnace of the as pontes power plant. Fuel Process. Technol. 2013, 116, 189–200. [Google Scholar] [CrossRef]
- Müller, M.; Schnell, U.; Scheffknecht, G. Modelling the fate of sulphur during pulverized coal combustion under conventional and oxy-fuel conditions. Energy Procedia 2013, 37, 1377–1388. [Google Scholar] [CrossRef] [Green Version]
- Maffei, T.; Sommariva, S.; Ranzi, E.; Faravelli, T. A predictive kinetic model of sulfur release from coal. Fuel 2012, 91, 213–223. [Google Scholar] [CrossRef]
- Modlinski, N.; Hardy, T. Development of high-temperature corrosion risk monitoring system in pulverized coal boilers based on reducing conditions identification and cfd simulations. Appl. Energy 2017, 204, 1124–1137. [Google Scholar] [CrossRef]
- Li, M.J.; Tang, S.Z.; Wang, F.L.; Zhao, Q.X.; Tao, W.Q. Gas-side fouling, erosion and corrosion of heat exchangers for middle/low temperature waste heat utilization: A review on simulation and experiment. Appl. Therm. Eng. 2017, 126, 737–761. [Google Scholar] [CrossRef]
- Wang, Y.; Tang, G. Prediction of sulfuric acid dew point temperature on heat transfer fin surface. Appl. Therm. Eng. 2016, 98, 492–501. [Google Scholar] [CrossRef]
- Hughes, K.J.; Tomlin, A.S.; Dupont, V.A.; Pourkashanian, M. Experimental and modelling study of sulfur and nitrogen doped premixed mehtane flames at low pressure. Faraday Discuss 2001, 119, 337–352. [Google Scholar] [CrossRef]
- Ströhle, J.; Chen, X.; Zorbach, I.; Epple, B. Validation of a detailed reaction mechanism for sulfur species in coal combustion. Combust. Sci. Technol. 2014, 186, 540–551. [Google Scholar] [CrossRef]
- von Bohnstein, M.; Langen, J.; Frigge, L.; Stroh, A.; Strohle, J.; Epple, B. Comparison of cfd simulations with measurements of gaseous sulfur species concentrations in a pulverized coal fired 1 mwth furnace. Energy Fuels 2016, 30, 9836–9849. [Google Scholar] [CrossRef]
- Oh, M.S.; Burnham, A.K.; Crawford, R.W. Evolution of sulfur gases during coal pyrolysis. Prepr. Am. Chem. Soc. Div. Fuel Chem. 1988, 33, 274–282. [Google Scholar]
- Shao, D.; Hutchinson, E.J.; Heidbrink, J.; Pan, W.P.; Chou, C.L. Behavior of sulfur during coal pyrolysis. J. Anal. Appl. Pyrolysis 1994, 30, 91–100. [Google Scholar] [CrossRef]
- Bozic, O. Numerische Simulation der Mineralumwandlung in Kohlestaubfeuerungen. Ph.D. Thesis, Fakultät für Maschinenbau und Elektrotechnik, Braunschweig, Germany, 2001. [Google Scholar]
- Strelow, M. Mineralumwandlung in Feuerungen. Ph.D. Thesis, Fakultät für Maschinenbau, Braunschweig, Germany, 2012. [Google Scholar]
- Garcia-Labiano, F.; Hampartsoumian, E.; Williams, A. Determination of sulfur release and its kinetics in rapid pyrolysis of coal. Fuel 1995, 74, 1072–1079. [Google Scholar] [CrossRef]
- Chen, H.K.; Li, B.Q.; Yang, J.I.; Zhang, B.J. Transformation of sulfur during pyrolysis and hydropyrolysis of coal. Fuel 1998, 77, 487–493. [Google Scholar] [CrossRef]
- Tomeczek, J.; Palugniok, H. Kinetics of mineral matter transformation during coal combustion. Fuel 2002, 81, 1251–1258. [Google Scholar] [CrossRef]
- Srinivasachar, S.; Helble, J.J.; Boni, A.A. Ash deposition mineral behavior during coal combustion 1. pyrite transformations. Prog. Energy Combust. Sci. 1990, 16, 281–292. [Google Scholar] [CrossRef]
- Yan, X.; Ma, L.; Zhu, B.; Zheng, D.; Lian, Y. Reaction mechanism process analysis with phosphogypsum decomposition in multiatmosphere control. Ind. Eng. Chem. Res. 2014, 53, 19453–19459. [Google Scholar] [CrossRef]
- Huang, J.J.; Zhao, J.T.; Chen, F.Y.; Zhang, Y.Q.; Wang, Y. Investigation of calcium sulfide regeneration with steam. J. China Univ. Min. Technol. 2005, 15, 288–292. [Google Scholar]
- Magda, S.I. Modelling of Transformation and Deposition of Alkaline Compounds under Combustion Conditions. Ph.D. Thesis, Technische Universität, Braunschweig, Germany, 2012. [Google Scholar]
- Akbar, S. Numerical Simulation of Deposit Formation in Coal-Fired Utility Boilers with Biomass Co-Combustion. Ph.D. Thesis, Universität Stuttgart, Stuttgart, Germany, 2011. [Google Scholar]
- Steffin, C. Freisetzung und Einbindung von Alkalien bei der Verbrennung und Vergasung von Kohle unter Druck. Ph.D. Thesis, Universität-Gesamthochschule, Essen, Germany, 1998. [Google Scholar]
- Tanaka, H. Thermal analysis and kinetics of solid state reactions. Thermochim. Acta 1995, 267, 29–44. [Google Scholar] [CrossRef]
- Khawam, A.; Flanagan, D.R. Solid-state kinetic models: Basics and mathematical fundamentals. J. Phys. Chem. B 2006, 110, 17315–17328. [Google Scholar] [CrossRef]
- Magda, A.; Magda, S.I.; Strelow, M.; Muller, H.; Leithner, R. Cfd modelling of ash deposits in coal fired power plants. In Proceedings of the International Conference on Heat Exchanger Fouling and Cleaning, Crete Island, Greece, 5–10 June 2011; p. 301. [Google Scholar]
- Frigge, L.; Elserafi, G.; Strohle, J.; Epple, B. Sulfur and chlorine gas species formation during coal pyrolysis in nitrogen and carbon dioxide atmosphere. Energy Fuels 2016, 30, 7713–7720. [Google Scholar] [CrossRef]
- Sankaran, R.; Hawkes, E.R.; Chen, J.H.; Lu, T.; Law, C.K. Structure of a spatially developing turbulent lean methane–air bunsen flame. Proc. Combust. Inst. 2007, 31, 1291–1298. [Google Scholar] [CrossRef]
- Pelucchi, M.; Frassoldati, A.; Faravelli, T.; Ruscic, B.; Glarborg, P. High-temperature chemistry of hcl and cl2. Combust. Flame 2015, 162, 2693–2704. [Google Scholar] [CrossRef] [Green Version]
- Magnussen, B. On the structure of turbulence and a generalized eddy dissipation concept for chemical reaction in turbulent flow. In Proceedings of the Nineteenth AIAA Meeting, St. Louis, MO, USA, 12–15 January 1981. [Google Scholar]
- Epple, B.; Fivel, W.; Krohmer, B.; Richards, G.; Benim, A.C. Assesment of two-phase flow models for the simulation of pulverized coal combustion. Int. J. Energy Clean Environ. 2005, 6, 267–287. [Google Scholar] [CrossRef]
- Stroh, A.; Alobaid, F.; Busch, J.P.; Ströhle, J.; Epple, B. 3-d numerical simulation for co-firing of torrefied biomass in a pulverized-fired 1 mwth combustion chamber. Energy 2015, 85, 105–116. [Google Scholar] [CrossRef]
- Benim, A.C.; Epple, B.; Krohmer, B. Modelling of pulverised coal combustion by a eulerian-eulerian two-phase flow formulation. Prog. Comput. Fluid Dyn. Int. J. 2005, 5, 345–361. [Google Scholar] [CrossRef]
- Frigge, L. Untersuchung der Freisetzung von Schwefel- und Chlorverbindungen Während der Oxyfuel-Verbrennung von Kohle. Ph.D. Thesis, Technische Universität Darmstadt, Darmstadt, Germany, 2018. [Google Scholar]
No. | Reaction | E | A |
---|---|---|---|
1 | 92.04 | 195.9 1/s | |
2 | 92.5 | 1/sPa | |
3 | 87.9 | 0.017 1/sPa | |
4 | 92.5 | 0.45 1/s | |
5 | 120 | 1/s | |
6 | 506.2 | 1/s | |
7 | 390 | 1/s | |
8 | 280.5 | 1/s | |
9 | 357.4 | 1/s | |
10 | 115.4 | 481.95 1/s | |
11 | 239 | 1/s | |
12 | 41.5 | 2.5 kg/m2sPa | |
No. | Function |
---|---|
1 | |
2 | |
3 |
Proximate Analysis | Ultimate Analysis | |||||
---|---|---|---|---|---|---|
Ash | Volatiles | Fixed Carbon | C | H | N | S |
9.33 | 37.3 | 53.37 | 72.91 | 4.97 | 1.25 | 3.01 |
Size Class 1 | Size Class 2 | Size Class 3 | Size Class 4 |
---|---|---|---|
76 m | 87 m | 110 m | 167 m |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
von Bohnstein, M.; Yildiz, C.; Frigge, L.; Ströhle, J.; Epple, B. Simulation Study of the Formation of Corrosive Gases in Coal Combustion in an Entrained Flow Reactor. Energies 2020, 13, 4523. https://doi.org/10.3390/en13174523
von Bohnstein M, Yildiz C, Frigge L, Ströhle J, Epple B. Simulation Study of the Formation of Corrosive Gases in Coal Combustion in an Entrained Flow Reactor. Energies. 2020; 13(17):4523. https://doi.org/10.3390/en13174523
Chicago/Turabian Stylevon Bohnstein, Maximilian, Coskun Yildiz, Lorenz Frigge, Jochen Ströhle, and Bernd Epple. 2020. "Simulation Study of the Formation of Corrosive Gases in Coal Combustion in an Entrained Flow Reactor" Energies 13, no. 17: 4523. https://doi.org/10.3390/en13174523
APA Stylevon Bohnstein, M., Yildiz, C., Frigge, L., Ströhle, J., & Epple, B. (2020). Simulation Study of the Formation of Corrosive Gases in Coal Combustion in an Entrained Flow Reactor. Energies, 13(17), 4523. https://doi.org/10.3390/en13174523