An Assessment of Corporate Average Fuel Economy Standards for Passenger Cars in South Korea
Abstract
:1. Introduction
2. Current Status of Passenger Cars in South Korea
3. CAFE Standards in South Korea and the Objective of this Study
- : average fuel efficiency performance,
- : average fuel efficiency standard,
- : total sales of cars,
- : car model ,
- : sales of car model ,
- : fuel efficiency performance of car model i,
- : fuel efficiency standard of car model .
- , , and : given parameters,
- : the curb weight of car model .
4. Methodology and Data
4.1. Global Change Assessment Model
- : Passenger transportation demand (passenger kilometers travelled or PKT),
- : Per capita income ($),
- : Price of transportation service ($/PKT),
- : Population,
- : Income elasticity,
- : Price elasticity,
- : Year in five-year time steps (for example, 2010 for calibration, 2015, 2020).
- : Sector (for example, passenger road sector, passenger rail sector),
- : Mode (for example, small car, medium car),
- : Technology (for example, ICEV, BEV),
- : Hourly wage ($/h),
- : Speed of mode (km/h),
- : A parameter for the calculation of value of time,
- : Fuel price ($/joule),
- : Energy intensity (joule/VKT),
- : Non-fuel price ($/VKT),
- : Load factor (PKT/VKT),
- : Market share.
4.2. Vehicle Cost Assumptions
4.3. Scenario Description
5. Results
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- International Energy Agency (IEA). World Energy Balances. 2019. Available online: https://www.iea.org/subscribe-to-data-services/world-energy-balances-and-statistics (accessed on 23 June 2020).
- International Energy Agency (IEA). CO2 Emissions from Fuel Combustion. Available online: https://www.iea.org/subscribe-to-data-services/co2-emissions-statistics (accessed on 23 June 2020).
- Korea Energy Economics Institute (KEEI). 2018 Yearbook of Energy Statistics; Korea Energy Economics Institute: Ulsan, Korea, 2018; Available online: http://www.keei.re.kr/keei/download/YES2018.pdf (accessed on 18 February 2020).
- Curran, S.J.; Wagner, R.M.; Graves, R.L.; Keller, M.; Green, J.B., Jr. Well-to-wheel analysis of direct and indirect use of natural gas in passenger vehicles. Energy 2014, 75, 194–203. [Google Scholar] [CrossRef] [Green Version]
- Durrmeyer, I.; Samano, M. To rebate or not to rebate: Fuel economy standards versus feebates. Econ. J. 2018, 128, 3076–3116. [Google Scholar] [CrossRef] [Green Version]
- National Highway Traffic Safety Administration (NHTSA). Corporate Average Fuel Economy. Available online: https://www.nhtsa.gov/laws-regulations/corporate-average-fuel-economy (accessed on 19 July 2019).
- Khan, M.I.; Shahrestani, M.; Hayat, T.; Shakoor, A.; Vahdati, M. Life cycle (well-to-wheel) energy and environmental assessment of natural gas as transportation fuel in Pakistan. Appl. Energy 2019, 242, 1738–1752. [Google Scholar] [CrossRef]
- Song, Q.; Wu, Y.; Li, J.; Wang, Z.; Yu, D.; Duan, H. Well-to-wheel GHG emissions and mitigation potential from light-duty vehicles in Macau. Int. J. Life Cycle Assess. 2018, 23, 1916–1927. [Google Scholar] [CrossRef]
- Jang, J.J.; Song, H.H. Well-to-wheel analysis on greenhouse gas emission and energy use with petroleum-based fuels in Korea: Gasoline and diesel. Int. J. Life Cycle Assess. 2015, 20, 1102–1116. [Google Scholar] [CrossRef]
- Yanni, T.; Paul, J. Impact and sensitivity of vehicle design parameters on fuel economy estimates. No. 2010-01-0734. SAE Tech. Pap. 2010. [Google Scholar] [CrossRef]
- Ministry of Land, Infrastructure and Transport (MOLIT). Total Registered Motor Vehicles. Available online: https://stat.molit.go.kr/portal/main/portalMain.do (accessed on 24 June 2020).
- Korea Transport Institute (KOTI). Korea Transportation Statistics (Various Years), Korea Transport Institute. Available online: https://www.ktdb.go.kr/www/index.do (accessed on 23 June 2020).
- Korea Energy Economics Institute (KEEI). Energy Consumption Survey (Various Years), Korea Energy Economics Institute. Available online: http://www.kesis.net/sub/sub_0002.jsp?M_MENU_ID=M_M_002&S_MENU_ID=S_M_010 (accessed on 24 June 2020).
- International Energy Agency (IEA). Global EV Outlook 2019; International Energy Agency: Paris, France, 2019; Available online: https://webstore.iea.org/global-ev-outlook-2019 (accessed on 24 June 2020).
- International Energy Agency (IEA). Energy Use Rationalization Act. Available online: https://www.iea.org/policies/392-energy-use-rationalization-act (accessed on 28 August 2020).
- Ministry of Trade, Industry and Energy. Energy Efficiency Innovation Strategy, South Korea. 2019. Available online: http://www.motie.go.kr/motie/ne/presse/press2/bbs/bbsView.do?bbs_cd_n=81&bbs_seq_n=161993 (accessed on 28 June 2020).
- Korea Energy Agency (KEA). Vehicle Fuel Economy and CO2 Emissions: Data and Analyses (Various Years), Korea Energy Agency. Available online: http://bpms.kemco.or.kr/transport_2012/pds/month_pds.aspx (accessed on 24 June 2020).
- Van Vuuren, D.P.; Edmonds, J.; Kainuma, M.; Riahi, K.; Thomson, A.; Hibbard, K.; Hurtt, G.; Kram, T.; Krey, V.; Lamarque, J.-F.; et al. The representative concentration pathways: An overview. Clim. Chang. 2011, 109, 5. [Google Scholar] [CrossRef]
- Kim, S.H.; Edmonds, J.; Lurz, J.; Smith, S.J.; Wise, M. The ObjECTS framework for integrated assessment: Hybrid modeling of transportation. Energy J. 2006. [Google Scholar] [CrossRef]
- Mishra, G.S.; Kyle, P.; Teter, J.; Morrison, G.M.; Kim, S.; Yeh, S. Transportation module of Global Change Assessment Model (GCAM): Model Documentation; Institute of Transportation Studies, University of California: Davis, CA, USA, 2013; Available online: https://trid.trb.org/view.aspx?id=1262949 (accessed on 28 August 2020).
- Kyle, P.; Kim, S.H. Long-term implications of alternative light-duty vehicle technologies for global greenhouse gas emissions and primary energy demands. Energy Policy 2011, 39, 3012–3024. [Google Scholar] [CrossRef]
- Yin, X.; Chen, W.; Eom, J.; Clarke, L.E.; Kim, S.H.; Patel, P.L.; Yu, S.; Kyle, G.P. China’s transportation energy consumption and CO2 emissions from a global perspective. Energy Policy 2015, 82, 233–248. [Google Scholar] [CrossRef]
- Jeon, S.; Kim, S. Modeling Domestic Transportation Sector Using Global Change Assessment Model. J. Korean Soc. Transp. 2017, 35, 91–104. [Google Scholar] [CrossRef] [Green Version]
- Jeon, S.; Roh, M.; Oh, J.; Kim, S. Development of an Integrated Assessment Model at Provincial Level: GCAM-Korea. Energies 2020, 13, 2565. [Google Scholar] [CrossRef]
- Korea Transportation Safety Authority (TS). Automobile Mileage Analysis (Various Years), Korea Transportation Safety Authority. Available online: https://www.kotems.or.kr/app/kotems/forward?pageUrl=/kotems/ptl/bbs/KotemsPtlBbsStatsLs&topmenu1=06&topmenu2=03&topmenu3=03 (accessed on 25 June 2020).
- Joint Global Change Research Institute (JGCRI). GCAM v5.1 Documentation: Global Change Assessment Model (GCAM). Available online: http://jgcri.github.io/gcam-doc (accessed on 14 April 2020).
- Lutsey, N.; Nicholas, M. Update on Electric Vehicle Costs in the United States through 2030. Int. Counc. Clean Transp. 2019, 1–12. Available online: https://theicct.org/sites/default/files/publications/EV_cost_2020_2030_20190401.pdf (accessed on 19 July 2020).
- Soulopoulos, N. When will electric vehicles be cheaper than conventional vehicles. Bloom. New Energy Financ. 2017, 12. Available online: https://www.blogmotori.com/wp-content/uploads/2017/07/EV-Price-Parity-Report_BlogMotori_COM_MobilitaSostenibile_IT.pdf (accessed on 19 July 2020).
- Ruffini, E.; Wei, M. Future costs of fuel cell electric vehicles in California using a learning rate approach. Energy 2018, 150, 329–341. [Google Scholar] [CrossRef]
- Morrison, G.; Stevens, J.; Joseck, F. Relative economic competitiveness of light-duty battery electric and fuel cell electric vehicles. Transp. Res. Part C Emerg. Technol. 2018, 87, 183–196. [Google Scholar] [CrossRef]
- Dunkerley, F.; Rohr, C.; Daly, A. Road Traffic Demand Elasticities: A Rapid Evidence Assessment. 2014. Available online: https://www.rand.org/pubs/research_reports/RR888.html (accessed on 28 June 2020).
- Organization for Economic Co-operation and Development (OECD). Road Passenger Transport by Passenger Cars. Available online: https://data.oecd.org/transport/passenger-transport.htm (accessed on 27 June 2020).
- Organization for Economic Co-Operation and Development (OECD). Level of GDP per Capita and Productivity. Available online: https://stats.oecd.org/Index.aspx?DataSetCode=PDB_LV (accessed on 27 June 2020).
- Krause, J.; Thiel, C.; Tsokolis, D.; Samaras, Z.; Rota, C.; Ward, A.; Prenninger, P.; Coosemans, T.; Neugebauer, S.; Verhoeve, W. EU road vehicle energy consumption and CO2 emissions by 2050–Expert-based scenarios. Energy Policy 2020, 138, 111224. [Google Scholar] [CrossRef]
- Bloomberg New Energy Finance (BNEF). Electric Vehicle Outlook 2020. Bloomberg Finance Limited Partnership. 2020. Available online: https://about.bnef.com/electric-vehicle-outlook/ (accessed on 20 July 2020).
- Parker, S.; Bhatti, M.I. Dynamics and drivers of per capita CO2 emissions in Asia. Energy Econ. 2020, 104798. [Google Scholar] [CrossRef]
- World Bank. CO2 Emissions (Metric Tons per Capita). Available online: https://data.worldbank.org/indicator/EN.ATM.CO2E.PC (accessed on 25 August 2020).
Scenario | Description | Tech | Relative Energy Intensity of Passenger Cars | |||
---|---|---|---|---|---|---|
2020 | 2030 | 2040 | 2050 | |||
Reference | No improvement | ICEV | 1 | 1 | 1 | 1 |
BEV | 1 | 1 | 1 | 1 | ||
FCEV | 1 | 1 | 1 | 1 | ||
Mod-EI | Moderate improvement in energy intensity | ICEV | 1 | 0.889 | 0.800 | 0.727 |
BEV | 1 | 0.881 | 0.838 | 0.821 | ||
FCEV | 1 | 0.842 | 0.825 | 0.816 | ||
Better-EI | High improvement in energy intensity | ICEV | 1 | 0.849 | 0.720 | 0.627 |
BEV | 1 | 0.841 | 0.758 | 0.721 | ||
FCEV | 1 | 0.802 | 0.745 | 0.716 | ||
Best-EI | Very high improvement in energy intensity | ICEV | 1 | 0.809 | 0.640 | 0.527 |
BEV | 1 | 0.801 | 0.678 | 0.621 | ||
FCEV | 1 | 0.762 | 0.665 | 0.616 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeon, S.; Roh, M.; Heshmati, A.; Kim, S. An Assessment of Corporate Average Fuel Economy Standards for Passenger Cars in South Korea. Energies 2020, 13, 4533. https://doi.org/10.3390/en13174533
Jeon S, Roh M, Heshmati A, Kim S. An Assessment of Corporate Average Fuel Economy Standards for Passenger Cars in South Korea. Energies. 2020; 13(17):4533. https://doi.org/10.3390/en13174533
Chicago/Turabian StyleJeon, Seungho, Minyoung Roh, Almas Heshmati, and Suduk Kim. 2020. "An Assessment of Corporate Average Fuel Economy Standards for Passenger Cars in South Korea" Energies 13, no. 17: 4533. https://doi.org/10.3390/en13174533
APA StyleJeon, S., Roh, M., Heshmati, A., & Kim, S. (2020). An Assessment of Corporate Average Fuel Economy Standards for Passenger Cars in South Korea. Energies, 13(17), 4533. https://doi.org/10.3390/en13174533