Feasibility Study GaN Transistors Application in the Novel Split-Coils Inductive Power Transfer System with T-Type Inverter
Abstract
:1. Introduction
2. Case Study System Description
3. Losses Models of the GaN Transistors
3.1. T-type Inverter Operation Mode
3.2. Losses Model of the GaN Transistor under Compensation Condition
3.3. Losses Model of Rectifier Diode Losses
4. Design and Losses Models of Coils Inductors
4.1. Design of the Transmitter and Receiver Coils
4.2. Losses Model of the Coils Inductors under Compensation Condition
5. Results of Experiments and Simulation
6. Conclusions
7. Patents
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Patil, D.; McDonough, M.K.; Miller, J.M.; Fahimi, B.; Balsara, P.T. Wireless power transfer for vehicular applications: Overview and challenges. IEEE Trans. Transp. Electr. 2018, 4, 3–37. [Google Scholar] [CrossRef]
- Shevchenko, V.; Husev, O.; Strzelecki, R.; Pakhaliuk, B.; Poliakov, N.; Strzelecka, N. Compensation topologies in IPT systems: Standards, requirements, classification, analysis, comparison and application. IEEE Access 2019, 7, 120559–120580. [Google Scholar] [CrossRef]
- Zahid, Z.U.; Zheng, C.; Chen, R.; Faraci, W.E.; Lai, J.-S.J.; Senesky, M.; Anderson, D. Design and control of a single-stage large air-gapped transformer isolated battery charger for wide-range output voltage for EV applications. In 2013 IEEE Energy Conversion Congress and Exposition; IEEE: Piscataway, NJ, USA, 2013; pp. 5481–5487. [Google Scholar]
- Shevchenko, V.; Husev, O.; Pakhaliuk, B.; Karlov, O.; Kondratenko, I. Coil design for wireless power transfer with series-parallel compensation. In Proceedings of the IEEE 2nd Ukraine Conference on Electrical and Computer Engineering (UKRCON), Lviv, Ukraine, 2–6 July 2019; pp. 401–407. [Google Scholar]
- Palmer, P.; Zhang, X.; Shelton, E.; Zhang, T.; Zhang, J. An experimental comparison of GaN, SiC and Si switching power devices. In Proceedings of the IECON 2017-43rd Annual Conference of the IEEE Industrial Electronics Society, Beijing, China, 9 October–1 November 2017; pp. 780–785. [Google Scholar] [CrossRef]
- Kumari, K.; Mapa, S.; Maheshwari, R. Loss analysis of NPC and T-type three-level converter for Si, SiC, and GaN based devices. In Proceedings of the 2020 IEEE 9th Power India International Conference (PIICON), Sonepat, India, 28 February–1 March 2020; pp. 1–6. [Google Scholar]
- Kuring, C.; Lenth, J.; Boecker, J.; Kahl, T.; Dieckerhoff, S. Application of GaN-GITs in a single-phase T-type inverter. In Proceedings of the PCIM Europe 2018 International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, Nuremberg, Germany, 5–7 June 2018; pp. 1–8. [Google Scholar]
- Kurumatani, H.; Katsura, S. GaN-HEMT-based three level T-type NPC inverter using reverse-conducting mode in rectifying. In Proceedings of the IEEE 26th International Symposium on Industrial Electronics (ISIE), Edinburgh, UK, 18–21 June 2017; pp. 1941–1946. [Google Scholar]
- Anthon, A.; Zhang, Z.; Andersen, M.A.E.; Holmes, D.G.; McGrath, B.; Teixeira, C.A. The benefits of SiC mosfets in a t-type inverter for grid-tie applications. IEEE Trans. Power Electron. 2017, 32, 2808–2821. [Google Scholar] [CrossRef] [Green Version]
- Avci, E.; Uçar, M. Analysis and design of grid-connected 3-phase 3-level AT-NPC inverter for low-voltage applications. Turkish J. Electr. Eng. Comput. Sci. 2017, 25, 2464–2478. [Google Scholar] [CrossRef]
- Ueno, H.; Kinoshita, Y.; Yamada, Y.; Suzuki, A.; Ichiryu, T.; Nomura, M.; Fujiwara, H.; Ishira, H.; Hatsuda, T. A 3-phase T-type 3-level inverter using GaN bidirectional switch with very low on-state resistance. In Proceedings of the PCIM Europe 2019, International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, Nuremberg, Germany, 7–9 May 2019; pp. 1–4. [Google Scholar]
- Pulakhandam, H.; Bhattacharya, S.; Byrd, T. Hybrid operation of a GaN-based three-level T-type inverter for pulse load applications. In Proceedings of the IEEE 7th Workshop on Wide Bandgap Power Devices and Applications (WiPDA), Raleigh, NC, USA, 29–31 October 2019; IEEE: Raleigh, NC, USA; pp. 378–383. [Google Scholar]
- Ma, C.-T.; Gu, Z.-H. Review of GaN HEMT Applications in Power Converters over 500 W. Electronics 2019, 8, 1401. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Wu, X.; Zhang, J. A single phase T-type inverter operating in boundary conduction mode. In Proceedings of the 2016 IEEE Energy Conversion Congress and Exposition (ECCE), Milwaukee, WI, USA, 18–22 September 2016; IEEE: Milwaukee, WI, USA; pp. 1–6. [Google Scholar]
- Gurpinar, E.; Castellazzi, A. Single-phase T-type inverter performance benchmark using Si IGBTs, SiC MOSFETs, and GaN HEMTs. IEEE Trans. Power Electr. 2016, 31, 7148–7160. [Google Scholar] [CrossRef]
- Chub, A.; Rabkowski, J.; Blinov, A.; Vinnikov, D. Study on power losses of the full soft-switching current-fed DC/DC converter with Si and GaN devices. In Proceedings of the IECON 2015—41st Annual Conference of the IEEE Industrial Electronics Society, Yokohama, Japan, 9–12 November 2015; pp. 13–18. [Google Scholar]
- Lidow, A.; Lidow, A.; Strydom, J.; de Rooij, M.; Reusch, D. GaN Transistors for Efficient Power Conversion, 2nd ed.; Wiley: Hoboken, NJ, USA, 2014; p. 250. [Google Scholar]
- Wang, B.; Dong, S.; Jiang, S.; He, C.; Hu, J.; Ye, H.; Ding, X.A. Comparative study on the switching performance of GaN and Si power devices for bipolar complementary modulated converter legs. Energies 2019, 12, 1146. [Google Scholar] [CrossRef] [Green Version]
- Aksamit, W.; Rzeszutko, J. Application of GaN transistors to increase efficiency of switched-mode power supplies. Zeszyty Naukowe Wydziału Elektrotechniki I Automatyki Politechniki Gdańskiej 2016, 49, 11–16. [Google Scholar]
- Bosshard, R.; Kolar, J.W.; Mühlethaler, J.; Stevanović, I.; Wunsch, B.; Canales, F. Modeling and η-α-pareto optimization of inductive power transfer coils for electric vehicles. IEEE J. Emerg. Sel. Top. Power Electron. 2015, 3, 50–64. [Google Scholar] [CrossRef]
- Song, K.; Li, Z.; Jiang, J.; Zhu, C. Constant current/voltage charging operation for series–series and series–parallel compensated wireless power transfer systems employing primary-side controller. IEEE Trans. Power Electr. 2018, 33, 8065–8080. [Google Scholar] [CrossRef]
- Kouro, S.; Malinowski, M.; Gopakumar, K.; Pou, J.; Franquelo, L.G.; Wu, B.; Rodriguez, J.; Pérez, M.A.; Leon, J.I. Recent advances and industrial applications of multilevel converters. IEEE Trans. Ind. Electr. 2010, 57, 2553–2580. [Google Scholar] [CrossRef]
- Salem, A.; Abido, M.A. T-type multilevel converter topologies: A comprehensive review. Arab. J. Sci. Eng. 2019, 44, 1713–1735. [Google Scholar] [CrossRef]
- Schweizer, M.; Kolar, J.W. Design and implementation of a highly efficient three-level T-type converter for low-voltage applications. IEEE Trans. Power Electr. 2013, 28, 899–907. [Google Scholar] [CrossRef]
- Liu, J.; Xu, W.; Chan, K.W.; Liu, M.; Zhang, X.; Chan, N.H.L. A three-phase single-stage AC–DC wireless-power-transfer converter with power factor correction and bus voltage control. IEEE J. Emerg. Sel. Top. Power Electron. 2020, 8, 1782–1800. [Google Scholar] [CrossRef]
- Liang, P.; Wu, Q.; Brüns, H.; Schuster, C. Efficient modeling of multi-coil wireless power transfer systems using combination of full-wave simulation and equivalent circuit modeling. In Proceedings of the IEEE International Symposium on Electromagnetic Compatibility and 2018 IEEE Asia-Pacific Symposium on Electromagnetic Compatibility (EMC/APEMC), Singapore, 14–17 May 2018; pp. 466–471. [Google Scholar]
- Ni, B.; Chung, C.Y.; Chan, H.L. Design and comparison of parallel and series resonant topology in wireless power transfer. In Proceedings of the IEEE 8th Conference on Industrial Electronics and Applications (ICIEA), Melbourne, Australia, 19–21 June 2013; pp. 1832–1837. [Google Scholar]
- Zhang, W.; Mi, C.C. Compensation topologies of high-power wireless power transfer systems. IEEE Trans. Veh. Technol. 2016, 65, 4768–4778. [Google Scholar] [CrossRef]
- Zhang, W.; Wong, S.-C.; Tse, C.K.; Chen, Q. Analysis and comparison of secondary series- and parallel compensated inductive power transfer systems operating for optimal efficiency and load-independent voltage-transfer ratio. IEEE Trans. Power Electron. 2014, 29, 2979–2990. [Google Scholar] [CrossRef]
- Muhlethaler, J. Modeling and Multi-Objective Optimization of Inductive Power Components. Ph.D. Thesis, Swiss Federal Institute Technology in Zurich, ETHZ, Zurich, Switzerland, 2012. [Google Scholar]
- GN009 Application Note. PCB Layout Considerations with GaN E-HEMTs, GaN Systems. 2019. Available online: https://gansystems.com/wp-content/uploads/2019/01/GN009-PCB-Layout-Considerations-with-GaN-E-HEMTs_20190118.pdf (accessed on 29 May 2020).
- Rodriguez, J.; Lai, J.-S.; Peng, F.Z. Multilevel inverters: A survey of topologies, controls, and applications. IEEE Trans. Ind. Electr. 2002, 49, 724–738. [Google Scholar] [CrossRef] [Green Version]
Level | S1 | S5 | S6 | S2 | Voltage |
---|---|---|---|---|---|
Positive (+) | 1 | 1 | 0 | 0 | +Vdc/2 |
Neutral (N) | 0 | 1 | 1 | 0 | 0 |
Negative (−) | 0 | 0 | 1 | 1 | −Vdc/2 |
Symbol | Description | Value |
---|---|---|
Vin | Input voltage | 300 V |
S1-S8 | GaN transistors | GS66508T |
Fsw | Switching frequency | 150; 200 kHz |
Csn | Snubber capacity | 100; 470 pF |
D1-D4 | Rectifying diodes | RB228NS100TL |
Lprim1,2 | Primary inductances | 90 μH |
Lsec | Secondary inductance | 24 μH |
k | Coupling coefficient | 0.7; 0.9 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shevchenko, V.; Pakhaliuk, B.; Husev, O.; Veligorskyi, O.; Stepins, D.; Strzelecki, R. Feasibility Study GaN Transistors Application in the Novel Split-Coils Inductive Power Transfer System with T-Type Inverter. Energies 2020, 13, 4535. https://doi.org/10.3390/en13174535
Shevchenko V, Pakhaliuk B, Husev O, Veligorskyi O, Stepins D, Strzelecki R. Feasibility Study GaN Transistors Application in the Novel Split-Coils Inductive Power Transfer System with T-Type Inverter. Energies. 2020; 13(17):4535. https://doi.org/10.3390/en13174535
Chicago/Turabian StyleShevchenko, Viktor, Bohdan Pakhaliuk, Oleksandr Husev, Oleksandr Veligorskyi, Deniss Stepins, and Ryszard Strzelecki. 2020. "Feasibility Study GaN Transistors Application in the Novel Split-Coils Inductive Power Transfer System with T-Type Inverter" Energies 13, no. 17: 4535. https://doi.org/10.3390/en13174535
APA StyleShevchenko, V., Pakhaliuk, B., Husev, O., Veligorskyi, O., Stepins, D., & Strzelecki, R. (2020). Feasibility Study GaN Transistors Application in the Novel Split-Coils Inductive Power Transfer System with T-Type Inverter. Energies, 13(17), 4535. https://doi.org/10.3390/en13174535