SiC-MOSFET and Si-IGBT-Based dc-dc Interleaved Converters for EV Chargers: Approach for Efficiency Comparison with Minimum Switching Losses Based on Complete Parasitic Modeling
Abstract
:1. Introduction
2. Dc–dc Interleaved Converter
3. Parasitic Model and Safe Operating Area
4. Power Loss Analysis
4.1. Losses in the Interleaved dc–dc Converter
4.2. Inductor Losses
4.3. Double Pulse Test and PLECS Analysis
5. Results
5.1. Inductor Selection
5.2. Power Loss and Efficiency Comparisons
5.3. Heat Sink Volume
5.4. Cost Comparison
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Yilmaz, M.; Krein, P.T. Review of Battery Charger Topologies, Charging Power Levels, and Infrastructure for Plug-In Electric and Hybrid Vehicles. IEEE Trans. Power Electron. 2013, 28, 2151–2169. [Google Scholar] [CrossRef]
- Ghosh, A. Possibilities and Challenges for the Inclusion of the Electric Vehicle (EV) to Reduce the Carbon Footprint in the Transport Sector: A Review. Energies 2020, 13, 2602. [Google Scholar] [CrossRef]
- Tran, V.T.; Sutanto, D.; Muttaqi, K.M. The state of the art of battery charging infrastructure for electrical vehicles: Topologies, power control strategies, and future trend. In Proceedings of the 2017 Australasian Universities Power Engineering Conference (AUPEC), Melbourne, VIC, Australia, 19–22 November 2017; pp. 1–6. [Google Scholar]
- Monteiro, V.; Ferreira, J.C.; Nogueiras Meléndez, A.A.; Couto, C.; Afonso, J.L. Experimental Validation of a Novel Architecture Based on a Dual-Stage Converter for Off-Board Fast Battery Chargers of Electric Vehicles. IEEE Trans. Veh. Technol. 2018, 67, 1000–1011. [Google Scholar] [CrossRef] [Green Version]
- Musavi, F.; Eberle, W. Overview of wireless power transfer technologies for electric vehicle battery charging. IET Elect. Power Appl. 2014, 7, 60–66. [Google Scholar] [CrossRef]
- Celli, G.; Soma, G.G.; Pilo, F.; Lacu, F.; Mocci, S.; Natale, N. Aggregated electric vehicles load profiles with fast charging stations. In Proceedings of the 2014 Power Systems Computation Conference, Wroclaw, Poland, 18–22 August 2014; pp. 1–7. [Google Scholar]
- Barrero-González, F.; Milanés-Montero, M.I.; González-Romera, E.; Romero-Cadaval, E.; Roncero-Clemente, C. Control Strategy for Electric Vehicle Charging Station Power Converters with Active Functions. Energies 2019, 12, 3971. [Google Scholar] [CrossRef] [Green Version]
- Dusmez, S.; Cook, A.; Khaligh, A. Comprehensive analysis of high quality power converters for level 3 off-board chargers. In Proceedings of the 2011 IEEE Vehicle Power and Propulsion Conference, Chicago, IL, USA, 6–9 September 2011; pp. 1–10. [Google Scholar] [CrossRef]
- Channegowda, J.; Pathipati, V.K.; Williamson, S.S. Comprehensive review and comparison of DC fast charging converter topologies: Improving electric vehicle plug-to-wheels efficiency. In Proceedings of the 2015 IEEE 24th International Symposium on Industrial Electronics (ISIE), Buzios, Brazil, 3–5 June 2015; pp. 263–268. [Google Scholar]
- Rivera, S.; Wu, B.; Kouro, S.; Yaramasu, V.; Wang, J. Electric Vehicle Charging Station Using a Neutral Point Clamped Converter with Bipolar DC Bus. IEEE Trans. Ind. Electron. 2015, 62, 1999–2009. [Google Scholar] [CrossRef]
- Drobnic, K.; Grandi, G.; Hammami, M.; Mandrioli, R.; Ricco, M.; Viatkin, A.; Vujacic, M. An Output Ripple-Free Fast Charger for Electric Vehicles Based on Grid- Tied Modular Three-Phase Interleaved Converters. IEEE Trans. Ind. Appl. 2019, 55, 6102–6114. [Google Scholar] [CrossRef]
- Hammami, M.; Viatkin, A.; Ricco, M.; Grandi, G. A DC/DC Fast Charger for Electric Vehicles with Minimum Input/Output Ripple Based on Multiphase Interleaved Converters. In Proceedings of the IEEE ICCEP International Conference on Clean Electrical Power, 2–4 July 2019; pp. 187–192. [Google Scholar]
- Hwu, K.I.; Yau, Y.T. An Interleaved AC–DC Converter Based on Current Tracking. IEEE Trans. Ind. Electron. 2009, 56, 1456–1463. [Google Scholar] [CrossRef]
- Zhang, D.; Wang, F.; Burgos, R.; Lai, R.; Boroyevich, D. DC-link ripple current reduction for paralleled three-phase voltage-source converters with interleaving. IEEE Trans. Power Electron. 2011, 26, 1741–1753. [Google Scholar] [CrossRef]
- Huang, Y.; Tan, S.; Hui, S.Y. Multiphase-Interleaved High Step-Up DC/DC Resonant Converter for Wide Load Range. IEEE Trans. Power Electron. 2019, 34, 7703–7718. [Google Scholar] [CrossRef]
- Devaraj, E.; Joseph, P.K.; Karuppa Raj Rajagopal, T.; Sundaram, S. Renewable Energy Powered Plugged-In Hybrid Vehicle Charging System for Sustainable Transportation. Energies 2020, 13, 1944. [Google Scholar] [CrossRef] [Green Version]
- Tan, L.; Zhu, N.; Wu, B. An Integrated Inductor for Eliminating Circulating Current of Parallel Three-Level DC–DC Converter-Based EV Fast Charger. IEEE Trans. Ind. Electron. 2016, 63, 1362–1371. [Google Scholar] [CrossRef]
- Biela, J.; Schweizer, M.; Waffler, S.; Kolar, J.W. Evaluation of potentials for performance improvement of inverter and DC–DC converter systems by SiC power semiconductors. IEEE Trans. Ind. Electron. 2011, 58, 2872–2882. [Google Scholar] [CrossRef]
- Anthon, A.; Zhang, Z.; Andersen, M.A.E.; Holmes, D.G.; McGrath, B.; Teixeira, C.A. The Benefits of SiC mosfets in a T-Type Inverter for Grid-Tie Applications. IEEE Trans. Power Electron. 2017, 32, 2808–2821. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.; He, J.; Madhusoodhanan, S. Three-Level Two-Stage Decoupled Active NPC Converter with Si IGBT and SiC MOSFET. IEEE Trans. Ind. Appl. 2018, 54, 6169–6178. [Google Scholar] [CrossRef]
- Loncarski, J.; Monopoli, V.G.; Leuzzi, R.; Ristic, L.; Cupertino, F. Analytical and Simulation Fair Comparison of Three Level Si IGBT Based NPC Topologies and Two Level SiC MOSFET Based Topology for High Speed Drives. Energies 2019, 12, 4571. [Google Scholar] [CrossRef] [Green Version]
- Loncarski, J.; Ricco, M.; Monteiro, V.; Monopoli, V.G. Efficiency Comparison of a dc-dc Interleaved Converter Based on SiC-MOSFET and Si-IGBT Devices for EV Chargers. In Proceedings of the 14th International Conference on Compatibility, Power Electronics and Power Engineering (CPE-POWERENG), Setubal, Portugal, 8–10 July 2020; pp. 517–522. [Google Scholar]
- Stefanskyi, A.; Starzak, Ł.; Napieralski, A. Review of commercial SiC MOSFET models: Validity and accuracy. In Proceedings of the 24th International Conference Mixed Design of Integrated Circuits and Systems, Bydgoszcz, Poland, 22–24 June 2017; pp. 488–493. [Google Scholar]
- Rosa, E.B. The Self and Mutual Inductances of Linear Conductors. In Bulletin of the Bureau of Standards; Dept. of Commerce and Labor, Bureau of Standards, U.S. Govt. Print. Off.: Washington, DC, USA, 1908; pp. 301–344. [Google Scholar]
- SCT3080KLHR Product Information. Available online: https://www.rohm.com/products/sic-power-devices/sic-mosfet/sct3080klhr-product (accessed on 9 July 2020).
- SCS220KG Product Information. Available online: https://www.rohm.com/products/sic-power-devices/sic-schottky-barrier-diodes/scs220kg-product (accessed on 9 July 2020).
- RGS50TSX2DHR Product Information. Available online: https://www.rohm.com/products/igbt/field-stop-trench-igbt/rgs50tsx2dhr-product (accessed on 9 July 2020).
- Femia, N.; Petrone, G.; Spagnuolo, G.; Vitelli, M. Power Electronics and Control Techniques for Maximum Energy Harvesting in Photovoltaic Systems; CRC Press: Boca Raton, FL, USA, 2013. [Google Scholar]
- Semikron: Application Manual Power Semiconductors. Available online: https://www.semikron.com/service-support/downloads/ (accessed on 5 June 2020).
- Erickson, R.W.; Maksimovic, D. Fundamentals of Power Electronics, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2001. [Google Scholar]
- MicroMetals. Available online: Https://www.micrometals.com (accessed on 5 June 2020).
- Power Conversion and Line Filter Applications (Micro Metals Iron Powder Core Application Note, Issue L, Feb. 2007.). Available online: https://www.tme.eu/Document/82fc93ef93d05a020041f9203a13131a/MICROMETALS-Tseries.pdf (accessed on 9 July 2020).
- Gurpinar, E.; Castellazzi, A. Single-Phase T-Type Inverter Performance Benchmark Using Si IGBTs, SiC MOSFETs, and GaN HEMTs. IEEE Trans. Power Electron. 2016, 31, 7148–7160. [Google Scholar] [CrossRef]
Parameter (Unit) | Value | ||
---|---|---|---|
(H) | 1.77 | ||
(m) | 8.92 | ||
(H) | 1.74 | ||
(m) | 8.79 | ||
(nH) | 36.5 | ||
(nH) | 66.5 | ||
(nH) | 33.25 | ||
(H) | 0.834 | ||
(m) | 4.21 | ||
Thin film capacitor (H) | 15 | ||
(m) | 4.8 | ||
(nH) | 12.4 | ||
(k) | 100 |
Parameters | Rohm SiC MOSFET SCT3080KLHR | SiC Schottky Diode SCS220KG | Rohm Si IGBT RGS50TSX2DHR |
---|---|---|---|
1200 V | 1200 V | 1200 V | |
(25 C) | 31 A | - | 50 A |
(100 C) | 22 A | 20 A/133 C | 25 A |
(25 C) | 80 m | N/A | N/A |
(25 C) | N/A | N/A | 1.7 V |
60nC@18 V | N/A | 67nC@15 V | |
2.7 V | N/A | 6 V | |
−4 to +22 V | N/A | ±30 V | |
175 C | 175 C | 175 C | |
(25 C) | 165 W | 210 W | 395 W |
0.7 C/W | 0.62 C/W | 0.38 C/W |
SiC-MOSFET-Based Converter | Si-IGBT-Based Converter | ||||
---|---|---|---|---|---|
Inductance (mH) | Switching Frequency (kHz) | () | Inductance (mH) | Switching Frequency (kHz) | () |
0.56 | 60 | 0 | 3.46 | 10 | 3.5 |
0.51 | 70 | 0 | 2.3 | 15 | 3.5 |
0.45 | 80 | 0 | 1.73 | 20 | 3.5 |
0.4 | 90 | 0 | 1.38 | 25 | 3.5 |
0.33 | 100 | 0 | 1.15 | 30 | 3.5 |
SiC-MOSFET Based Converter | Si-IGBT Based Converter | ||
---|---|---|---|
Parameter (unit) | Value | Parameter (unit) | Value |
(V) | 800 | (V) | 800 |
() | 0 | () | 3.5 |
() | 1.5 | () | 1.5 |
D (%) | 50 | D (%) | 50 |
L– Pairs | Iron Core | Alloy Core |
---|---|---|
SiC-MOSFET-based converter | ||
0.56 mH, 60 kHz | T400-14D * | OP-521014-2 |
0.51 mH, 70 kHz | T400-14D | OP-521014-2 |
0.45 mH, 80 kHz | T400-14D | OP-521014-2 |
0.4 mH, 90 kHz | T400-14D | OP-521014-2 |
0.33 mH, 100 kHz | T400-14D | SM-400026-2 |
Si-IGBT-based converter | ||
3.46 mH, 10 kHz | T650-14 | - |
2.3 mH, 15 kHz | T650-14 | FS-650014-2 |
1.73 mH, 20 kHz | T650-14 | OD-650026-2 |
1.38 mH, 25 kHz | T650-14 | OD-601026-2 |
1.15 mH, 30 kHz | T650-14 | FS-601014-2 |
SiC-MOSFET Based Converter | |||||||
---|---|---|---|---|---|---|---|
, pairs | Core type | N | AWG | () | (cm) | (cm) | |
0.56 mH, 60 kHz | T400-14D | 110 | 7 | 0.03082 | 6.85 | 14.62 | 171 |
0.51 mH, 70 kHz | T400-14D | 105 | 7 | 0.02895 | 6.85 | 14.46 | 171 |
0.45 mH, 80 kHz | T400-14D | 98 | 7 | 0.02649 | 6.85 | 14.24 | 171 |
0.4 mH, 90 kHz | T400-14D | 92 | 6 | 0.02009 | 6.85 | 14.76 | 171 |
0.33 mH, 100 kHz | SM-400026-2 | 87 | 6 | 0.01522 | 3.5226 | 11.51 | 85.5 |
Si-IGBT Based Converter | |||||||
, pairs | Core type | N | AWG | () | (cm) | (cm) | |
3.46 mH, 10 kHz | T650-14 | 212 | 6 | 0.07507 | 18.4 | 23.64 | 734 |
2.3 mH, 15 kHz | FS-650014-2 | 241 | 6 | 0.06565 | 9.87 | 18.09 | 407 |
1.73 mH, 20 kHz | OD-650026-2 | 155 | 5 | 0.03049 | 9.87 | 17.05 | 407 |
1.38 mH, 25 kHz | OD-601026-2 | 137 | 5 | 0.0273 | 8.8064 | 17.19 | 317 |
1.15 mH, 30 kHz | FS-601014-2 | 167 | 6 | 0.04266 | 8.8064 | 17.09 | 317 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Loncarski, J.; Monopoli, V.G.; Cascella, G.L.; Cupertino, F. SiC-MOSFET and Si-IGBT-Based dc-dc Interleaved Converters for EV Chargers: Approach for Efficiency Comparison with Minimum Switching Losses Based on Complete Parasitic Modeling. Energies 2020, 13, 4585. https://doi.org/10.3390/en13174585
Loncarski J, Monopoli VG, Cascella GL, Cupertino F. SiC-MOSFET and Si-IGBT-Based dc-dc Interleaved Converters for EV Chargers: Approach for Efficiency Comparison with Minimum Switching Losses Based on Complete Parasitic Modeling. Energies. 2020; 13(17):4585. https://doi.org/10.3390/en13174585
Chicago/Turabian StyleLoncarski, Jelena, Vito Giuseppe Monopoli, Giuseppe Leonardo Cascella, and Francesco Cupertino. 2020. "SiC-MOSFET and Si-IGBT-Based dc-dc Interleaved Converters for EV Chargers: Approach for Efficiency Comparison with Minimum Switching Losses Based on Complete Parasitic Modeling" Energies 13, no. 17: 4585. https://doi.org/10.3390/en13174585
APA StyleLoncarski, J., Monopoli, V. G., Cascella, G. L., & Cupertino, F. (2020). SiC-MOSFET and Si-IGBT-Based dc-dc Interleaved Converters for EV Chargers: Approach for Efficiency Comparison with Minimum Switching Losses Based on Complete Parasitic Modeling. Energies, 13(17), 4585. https://doi.org/10.3390/en13174585