Solution-Processed Titanium Oxide for Rear Contact Improvement in Heterojunction Solar Cells
Abstract
:1. Introduction
2. Experimental Procedures
3. Results and Discussions
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Meyer, J.; Hamwi, S.; Kröger, M.; Kowalsky, W.; Riedl, T.; Kahn, A. Transition Metal Oxides for Organic Electronics: Energetics, Device Physics and Applications. Adv. Mater. 2012, 24, 5408–5427. [Google Scholar] [CrossRef]
- Lee, Y.-T.; Lin, F.-R.; Chen, C.-H.; Pei, Z. A 14.7% Organic/Silicon Nanoholes Hybrid Solar Cell via Interfacial Engineering by Solution-Processed Inorganic Conformal Layer. ACS Appl. Mater. Interfaces 2016, 8, 34537–34545. [Google Scholar] [CrossRef]
- Lee, Y.-T.; Lin, F.-R.; Lin, T.-C.; Chen, C.-H.; Pei, Z. Low-Temperature, Chemically Grown Titanium Oxide Thin Films with a High Hole Tunneling Rate for Si Solar Cells. Energies 2016, 9, 402. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.; Bae, S.; Park, H.; Choi, D.; Song, H.; Lee, H.; Ohshita, Y.; Kim, D.; Kang, Y.; Lee, H.-S. Properties of Thermally Evaporated Titanium Dioxide as an Electron-Selective Contact for Silicon Solar Cells. Energies 2020, 13, 678. [Google Scholar] [CrossRef] [Green Version]
- Battaglia, C.; Yin, X.; Zheng, M.; Sharp, I.D.; Chen, T.; McDonnell, S.; Azcatl, A.; Carraro, C.; Ma, B.; Maboudian, R.; et al. Hole Selective MoOx Contact for Silicon Solar Cells. Nano Lett. 2014, 14, 967–971. [Google Scholar] [CrossRef]
- Islam, R.; Shine, G.; Saraswat, K.C. Schottky barrier height reduction for holes by Fermi level depinning using metal/nickel oxide/silicon contacts. Appl. Phys. Lett. 2014, 105, 182103. [Google Scholar] [CrossRef] [Green Version]
- Geissbühler, J.; Werner, J.; Martin de Nicolas, S.; Barraud, L.; Hessler-Wyser, A.; Despeisse, M.; Nicolay, S.; Tomasi, A.; Niesen, B.; De Wolf, S.; et al. 22.5% efficient silicon heterojunction solar cell with molybdenum oxide hole collector. Appl. Phys. Lett. 2015, 107, 081601. [Google Scholar] [CrossRef] [Green Version]
- Avasthi, S.; McClain, W.E.; Man, G.; Kahn, A.; Schwartz, J.; Sturm, J.C. Hole-blocking titanium-oxide/silicon heterojunction and its application to photovoltaics. Appl. Phys. Lett. 2013, 102, 203901. [Google Scholar] [CrossRef] [Green Version]
- Nagamatsu, K.A.; Avasthi, S.; Sahasrabudhe, G.; Man, G.; Jhaveri, J.; Berg, A.H.; Schwartz, J.; Kahn, A.; Wagner, S.; Sturm, J.C. Titanium dioxide/silicon hole-blocking selective contact to enable double-heterojunction crystalline silicon-based solar cell. Appl. Phys. Lett. 2015, 106, 123906. [Google Scholar] [CrossRef] [Green Version]
- Kishimoto, H.; Takahama, K.; Hashimoto, N.; Aoi, Y.; Deki, S. Photocatalytic activity of titanium oxide prepared by liquid phase deposition (LPD). J. Mater. Chem. 1998, 8, 2019–2024. [Google Scholar] [CrossRef]
- Lee, M.-K.; Lee, H.-C.; Hsu, C.-M. High dielectric constant TiO2 film grown on polysilicon by liquid phase deposition. Mater. Sci. Semicond. Process. 2007, 10, 61–67. [Google Scholar] [CrossRef]
- Giebink, N.C.; Wiederrecht, G.P.; Wasielewski, M.R.; Forrest, S.R. Ideal diode equation for organic heterojunctions. I. Derivation and application. Phys. Rev. B 2010, 82, 155305. [Google Scholar] [CrossRef] [Green Version]
- Fang, Q.; Meier, M.; Yu, J.J.; Wang, Z.M.; Zhang, J.Y.; Wu, J.X.; Kenyon, A.; Hoffmann, P.; Boyd, I.W. FTIR and XPS investigation of Er-doped SiO2–TiO2 films. Mater. Sci. Eng. B 2003, 105, 209–213. [Google Scholar] [CrossRef]
- Xu, W.-X.; Zhu, S.; Fu, X.-C. XPS study of TiOx thin films deposited on glass substrates by the sol–gel process. Appl. Surf. Sci. 1998, 136, 194–205. [Google Scholar] [CrossRef]
- Erdem, B.; Hunsicker, R.A.; Simmons, G.W.; Sudol, E.D.; Dimonie, V.L.; El-Aasser, M.S. XPS and FTIR Surface Characterization of TiO2 Particles Used in Polymer Encapsulation. Langmuir 2001, 17, 2664–2669. [Google Scholar] [CrossRef]
- Pei, Z.; Hwang, H.L. Formation of silicon nano-dots in luminescent silicon nitride. Appl. Surf. Sci. 2003, 212–213, 760–764. [Google Scholar] [CrossRef]
- Yu, P.; Tsai, C.-Y.; Chang, J.-K.; Lai, C.-C.; Chen, P.-H.; Lai, Y.-C.; Tsai, P.-T.; Li, M.-C.; Pan, H.-T.; Huang, Y.-Y.; et al. 13% Efficiency Hybrid Organic/Silicon-Nanowire Heterojunction Solar Cell via Interface Engineering. ACS Nano 2013, 7, 10780–10787. [Google Scholar] [CrossRef]
- Dingemans, G.; Kessels, W.M.M. Status and prospects of Al2O3-based surface passivation schemes for silicon solar cells. J. Vac. Sci. Technol. A 2012, 30, 040802. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, J.; Aberle, A.G. Accurate method for the determination of bulk minority-carrier lifetimes of mono- and multicrystalline silicon wafers. J. Appl. Phys. 1997, 81, 6186–6199. [Google Scholar] [CrossRef]
- Dao, V.A.; Heo, J.; Choi, H.; Kim, Y.; Park, S.; Jung, S.; Lakshminarayan, N.; Yi, J. Simulation and study of the influence of the buffer intrinsic layer, back-surface field, densities of interface defects, resistivity of p-type silicon substrate and transparent conductive oxide on heterojunction with intrinsic thin-layer (HIT) solar cell. Sol. Energy 2010, 84, 777–783. [Google Scholar] [CrossRef]
- Pei, Z.; Thiyagu, S.; Jhong, M.-S.; Hsieh, W.-S.; Cheng, S.-J.; Ho, M.-W.; Chen, Y.-H.; Liu, J.-C.; Yeh, C.-M. An amorphous silicon random nanocone/polymer hybrid solar cell. Sol. Energy Mater. Sol. Cells 2011, 95, 2431–2436. [Google Scholar] [CrossRef]
- Pei, Z.; Chang, S.; Liu, C.; Chen, Y. Numerical Simulation on the Photovoltaic Behavior of an Amorphous-Silicon Nanowire-Array Solar Cell. IEEE Electron. Device Lett. 2009, 30, 1305–1307. [Google Scholar]
- Jeong, H.Y.; Lee, J.Y.; Choi, S.-Y.; Kim, J.W. Microscopic origin of bipolar resistive switching of nanoscale titanium oxide thin films. Appl. Phys. Lett. 2009, 95, 162108. [Google Scholar] [CrossRef] [Green Version]
Parameter | Voc (mV) | Jsc (mA/cm2) | Fill Factor | PCE (%) b | Rs (Ω-cm2) | Rsh (Ω-cm2) |
---|---|---|---|---|---|---|
Ref. a | 433 | 30.7 | 0.716 | 9.57 | 2.59 | 1562 |
8 nm | 600 | 31.5 | 0.778 | 14.70 | 2.46 | 1244 |
16 nm | 566 | 30.9 | 0.790 | 13.81 | 1.89 | 1564 |
25 nm | 564 | 30.4 | 0.756 | 12.96 | 3.67 | 776 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, Y.-T.; Lin, F.-R.; Pei, Z. Solution-Processed Titanium Oxide for Rear Contact Improvement in Heterojunction Solar Cells. Energies 2020, 13, 4650. https://doi.org/10.3390/en13184650
Lee Y-T, Lin F-R, Pei Z. Solution-Processed Titanium Oxide for Rear Contact Improvement in Heterojunction Solar Cells. Energies. 2020; 13(18):4650. https://doi.org/10.3390/en13184650
Chicago/Turabian StyleLee, Yu-Tsu, Fang-Ru Lin, and Zingway Pei. 2020. "Solution-Processed Titanium Oxide for Rear Contact Improvement in Heterojunction Solar Cells" Energies 13, no. 18: 4650. https://doi.org/10.3390/en13184650
APA StyleLee, Y. -T., Lin, F. -R., & Pei, Z. (2020). Solution-Processed Titanium Oxide for Rear Contact Improvement in Heterojunction Solar Cells. Energies, 13(18), 4650. https://doi.org/10.3390/en13184650