A Model to Improve Granular Temperature in CFD-DEM Simulations
Abstract
:1. Introduction
2. Model to Improve the Granular Temperature
2.1. Mean Relative Deviation of the Drag Force in Homogenous Systems
2.2. Model to Enhance Granular Temperature in CFD-DEM Simulations
2.3. Determination of the Expected Mean Relative Deviation of the Drag Force
3. Posteriori Validations
3.1. Gas–Solid Flows in a Tri-Periodic Domain
3.2. Liquid–Solid Fluidized Beds
3.3. Gas–Solid Fluidized Beds
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jackson, R. The Dynamics of Fluidized Particles; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Lun, C.; Savage, S.B.; Jeffrey, D.; Chepurniy, N. Kinetic theories for granular flow: Inelastic particles in Couette flow and slightly inelastic particles in a general flowfield. J. Fluid Mech. 1984, 140, 223–256. [Google Scholar] [CrossRef]
- Tsuji, Y.; Kawaguchi, T.; Tanaka, T. Discrete particle simulation of two-dimensional fluidized bed. Powder Technol. 1993, 77, 79–87. [Google Scholar] [CrossRef]
- Zhu, H.; Zhou, Z.; Yang, R.; Yu, A. Discrete particle simulation of particulate systems: Theoretical developments. Chem. Eng. Sci. 2007, 62, 3378–3396. [Google Scholar] [CrossRef]
- Esteghamatian, A.; Bernard, M.; Lance, M.; Hammouti, A.; Wachs, A. Micro/Meso simulation of a fluidized bed in a homogeneous bubbling regime. Int. J. Multiph. Flow 2017, 92, 93–111. [Google Scholar] [CrossRef]
- Ergun, S. Fluid flow through packed columns. Chem. Eng. Prog. 1952, 48, 89–94. [Google Scholar]
- Gidaspow, D. Multiphase Flow and Fluidization: Continuum and Kinetic Theory Descriptions; Academic Press: Cambridge, MA, USA, 1994. [Google Scholar]
- Wen, C.Y.; Yu, Y.H. Mechanics of fluidization. Chem. Eng. Prog. Symp. Ser. 1966, 62, 100–111. [Google Scholar]
- Beetstra, R.; van der Hoef, M.A.; Kuipers, J. Drag force of intermediate Reynolds number flow past mono--and bidisperse arrays of spheres. AIChE J. 2007, 53, 489–501. [Google Scholar] [CrossRef]
- Tang, Y.; Peters, E.; Kuipers, J.; Kriebitzsch, S.; van der Hoef, M. A new drag correlation from fully resolved simulations of flow past monodisperse static arrays of spheres. AIChE J. 2015, 61, 688–698. [Google Scholar] [CrossRef] [Green Version]
- Tenneti, S.; Garg, R.; Subramaniam, S. Drag law for monodisperse gas-solid systems using particle-resolved direct numerical simulation of flow past fixed assemblies of spheres. Int. J. Multiph. Flow 2011, 37, 1072–1092. [Google Scholar] [CrossRef]
- Zhou, Q.; Fan, L.-S. Direct numerical simulation of moderate-Reynolds-number flow past arrays of rotating spheres. Phys. Fluids 2015, 27, 073306. [Google Scholar] [CrossRef]
- Huang, Z.; Wang, H.; Zhou, Q.; Li, T. Effects of granular temperature on inter-phase drag in gas-solid flows. Powder Technol. 2017, 321, 435–443. [Google Scholar] [CrossRef]
- Akiki, G.; Jackson, T.; Balachandar, S. Force variation within arrays of monodisperse spherical particles. Phys. Rev. Fluids 2016, 1, 044202. [Google Scholar] [CrossRef]
- Hrenya, C.M.; Sinclair, J.L. Effects of particle--phase turbulence in gas—solid flows. AIChE J. 1997, 43, 853–869. [Google Scholar] [CrossRef]
- Yu, Y.; Li, Y.; Jiang, M.; Zhou, Q. Meso-Scale Drag Model designed for coarse-grid Eulerian-Lagrangian simulation of gas-solid flows. Chem. Eng. Sci. 2020, 223, 115747. [Google Scholar] [CrossRef]
- Akiki, G.; Jackson, T.; Balachandar, S. Pairwise interaction extended point-particle model for a random array of monodisperse spheres. J. Fluid Mech. 2017, 813, 882–928. [Google Scholar] [CrossRef]
- Balachandar, S.; Moore, W.; Akiki, G.; Liu, K. Towards particle-resolved accuracy in Euler-Lagrange simulations of multiphase flow using machine learning and pairwise interaction extended point-particle (PIEP) Approximation. arXiv 2020, arXiv:2005.09569. [Google Scholar] [CrossRef]
- Ma, T.; Yu, Y.; Chen, X.; Zhou, Q. Effect of anisotropic microstructures on fluid–particle drag in low--Reynolds--number monodisperse gas–solid suspensions. AIChE J. 2020, 66, e16910. [Google Scholar] [CrossRef]
- Tenneti, S.; Mehrabadi, M.; Subramaniam, S. Stochastic Lagrangian model for hydrodynamic acceleration of inertial particles in gas–solid suspensions. J. Fluid Mech. 2016, 788, 695–729. [Google Scholar] [CrossRef]
- Esteghamatian, A.; Euzenat, F.; Hammouti, A.; Lance, M.; Wachs, A. A stochastic formulation for the drag force based on multiscale numerical simulation of fluidized beds. Int. J. Multiph. Flow 2018, 99, 363–382. [Google Scholar] [CrossRef]
- Zhou, Q.; Fan, L.-S. A second-order accurate immersed boundary-lattice Boltzmann method for particle-laden flows. J. Comput. Phys. 2014, 268, 269–301. [Google Scholar] [CrossRef]
- Agrawal, K.; Loezos, P.N.; Syamlal, M.; Sundaresan, S. The role of meso-scale structures in rapid gas-solid flows. J. Fluid Mech. 2001, 445, 151–185. [Google Scholar] [CrossRef] [Green Version]
- Garg, R.; Galvin, J.; Li, T.; Pannala, S. Documentation of Open-Source MFIX–DEM Software for Gas-Solids Flows. Available online: https://mfix.netl.doe.gov/documentation/dem_doc_2012-1.pdf (accessed on 28 July 2020).
- Zhou, Z.; Kuang, S.; Chu, K.; Yu, A. Discrete particle simulation of particle-fluid flow: Model formulations and their applicability. J. Fluid Mech. 2010, 661, 482–510. [Google Scholar] [CrossRef]
- Bernard, M.; Climent, E.; Wachs, A. Controlling the quality of two-way Euler/Lagrange numerical modeling of bubbling and spouted fluidized beds dynamics. Ind. Eng. Chem. Res. 2017, 56, 368–386. [Google Scholar] [CrossRef] [Green Version]
Simulation Parameters | Values |
---|---|
Domain size | |
Inlet velocity | 2.0, 3.0, 4.5, 5.5 |
Inlet Reynolds number | 4.0, 6.0, 9.0, 11.0 |
Inverse Froude number | 24.5, 10.9, 4.8, 3.2 |
Solid-fluid density ratio | 10.0 |
Stokes number | 2.2, 3.3, 5.0, 6.1 |
Total number of particles | 512 |
2 | 25 | 0.49 | 85 | 118 | 2000 |
Simulation Cases | |||
---|---|---|---|
PR-DNS | 0.11 | 0.36 | 0.19 |
CFD-DEM without model | 0.09 (−15%) | 0.16 (−57%) | 0.11 (−40%) |
CFD-DEM with model | 0.14 (+27%) | 0.14 (−62%) | 0.14 (−27%) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, Y.; Zhao, L.; Li, Y.; Zhou, Q. A Model to Improve Granular Temperature in CFD-DEM Simulations. Energies 2020, 13, 4730. https://doi.org/10.3390/en13184730
Yu Y, Zhao L, Li Y, Zhou Q. A Model to Improve Granular Temperature in CFD-DEM Simulations. Energies. 2020; 13(18):4730. https://doi.org/10.3390/en13184730
Chicago/Turabian StyleYu, Yaxiong, Li Zhao, Yu Li, and Qiang Zhou. 2020. "A Model to Improve Granular Temperature in CFD-DEM Simulations" Energies 13, no. 18: 4730. https://doi.org/10.3390/en13184730
APA StyleYu, Y., Zhao, L., Li, Y., & Zhou, Q. (2020). A Model to Improve Granular Temperature in CFD-DEM Simulations. Energies, 13(18), 4730. https://doi.org/10.3390/en13184730