Temperature Distribution in Insulated Temperature-Controlled Container by Numerical Simulation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Mathematical Model
2.3. Numerical Method
2.4. Physical Model
2.5. Experimental Research
3. Results
3.1. Model Verification
3.2. Air-Flow and Temperature Distribution
3.3. Inlet-Velocity Influence
3.4. Fan-Location Influence
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Liu, M.; Saman, W.; Bruno, F. Computer simulation with TRNSYS for a mobile refrigeration system incorporating a phase change thermal storage unit. Appl. Energy 2014, 132, 226–235. [Google Scholar] [CrossRef]
- Mercier, S.; Villeneuve, S.; Mondor, M.; Uysal, I. Time-Temperature Management along the Food Cold Chain: A Review of Recent Developments. Compr. Rev. Food Sci. Food Saf. 2017, 16, 647–667. [Google Scholar] [CrossRef]
- Oury, A.; Namy, P.; Youbi-Idrisi, M. Aero-thermal Simulation of a Refrigerated Truck under Open/Closed-Door Cycles. In Proceedings of the 2015 COMSOL Conference, Grenoble, France, 14 November 2015. [Google Scholar]
- Liu, M.; Saman, W.; Bruno, F. Development of a novel refrigeration system for refrigerated trucks incorporating phase change material. Appl. Energy 2012, 92, 336–342. [Google Scholar] [CrossRef]
- Ahmed, M.; Meade, O.; Medina, M.A. Reducing heat transfer across the insulated walls of refrigerated truck trailers by the application of phase change materials. Energy Convers. Manag. 2010, 51, 383–392. [Google Scholar] [CrossRef]
- Pielichowska, K.; Pielichowski, K. Phase change materials for thermal energy storage. Prog. Mater. Sci. 2014, 65, 67–123. [Google Scholar] [CrossRef]
- Zhou, D.; Zhao, C.Y.; Tian, Y. Review on thermal energy storage with phase change materials (PCMs) in building applications. Appl. Energy 2012, 92, 593–605. [Google Scholar] [CrossRef] [Green Version]
- Oró, E.; Miró, L.; Farid, M.M.; Cabeza, L.F. Thermal analysis of a low temperature storage unit using phase change materials without refrigeration system. Int. J. Refrig. 2012, 35, 1709–1714. [Google Scholar] [CrossRef]
- Liu, L.; Su, D.; Tang, Y.; Fang, G. Thermal conductivity enhancement of phase change materials for thermal energy storage: A review. Renew. Sustain. Energy Rev. 2016, 62, 305–317. [Google Scholar] [CrossRef]
- Fioretti, R.; Principi, P.; Copertaro, B. A refrierated container envelope with a PCM (Phase Change Material) layer: Experimental and theoretical investigation in a representative town in Central Italy. Energy Convers. Manag. 2016, 122, 131–141. [Google Scholar] [CrossRef]
- Oró, E.; de Gracia, A.; Cabeza, L.F. Active phase change material package for thermal protection of ice cream containers. Int. J. Refrig. 2013, 36, 102–109. [Google Scholar] [CrossRef]
- Wang, C.; He, Z.; Li, H.; Wennerstern, R.; Sun, Q. Evaluation on Performance of a Phase Change Material Based Cold Storage House. Energy Procedia 2017, 105, 3947–3952. [Google Scholar] [CrossRef]
- Yusufoglu, Y.; Apaydin, T.; Yilmaz, S.; Paksoy, H.O. Improving performance of household refrigerators by incorporating phase change materials. Int. J. Refrig. 2015, 57, 173–185. [Google Scholar] [CrossRef]
- Huang, L.; Piontek, U. Improving Performance of Cold-Chain Insulated Container with Phase Change Material: An Experimental Investigation. Appl. Sci. 2017, 7, 1288. [Google Scholar] [CrossRef] [Green Version]
- Gin, B.; Farid, M.M. The use of PCM panels to improve storage condition of frozen food. J. Food Eng. 2010, 100, 372–376. [Google Scholar] [CrossRef]
- Liu, G.; Wu, J.; Alan, F.; Xie, R.; Tang, H.; Zou, Y.; Qu, R. Design and no-load performance test of GU-PCM2 temperature controlled phase change storage refrigerator. Trans. Chin. Soc. Agric. Eng. 2019, 35, 288–295. [Google Scholar]
- Xu, X.F.; Zhang, X.L.; Munyalo, J.M. Simulation Study on Temperature Field and Cold Plate Melting of Cold Storage Refrigerator Car. Energy Procedia 2017, 142, 3394–3400. [Google Scholar]
- Zhang, Z.; Guo, Y.G.; Tian, J.J.; Li, M. Numerical simulation and experiment of temperature field distribution in box of cold plate refrigerated truck. Trans. Chin. Soc. Agric. Eng. 2013, 29, 18–24. [Google Scholar]
- Zou, Q.; Opara, L.U.; McKibbin, R. A CFD modeling system for airflow and heat transfer in ventilated packaging for fresh foods: I. Initial analysis and development of mathematical models. J. Food Eng. 2006, 77, 1037–1047. [Google Scholar] [CrossRef]
- Jiang, T.; Xu, N.; Luo, B.; Deng, L.; Wang, S.; Gao, Q.; Zhang, Y. Analysis of an internal structure for refrigerated container: Improving distribution of cooling capacity. Int. J. Refrig. 2020, 113, 228–238. [Google Scholar] [CrossRef]
- Jedermann, R.; Geyer, M.; Praeger, U.; Lang, W. Sea transport of bananas in containers–Parameter identification for a temperature model. J. Food Eng. 2013, 115, 330–338. [Google Scholar] [CrossRef]
- Delele, M.A.; Ngcobo, M.E.K.; Getahun, S.T.; Chen, L.; Mellmann, J.; Opara, U.L. Studying airflow and heat transfer characteristics of a horticultural produce packaging system using a 3-D CFD model. Part II: Effect of package design. Postharvest Biol. Technol. 2013, 86, 546–555. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, L.; Tian, J.; Guo, Y.; Li, Y. Effects of refrigerated truck temperature field uniformity on preservation of vegetables. Trans. Chin. Soc. Agric. Eng. 2014, 30, 309–316. [Google Scholar]
- Defraeye, T.; Nicolai, B.; Kirkman, W.; Moore, S.; Niekerk, S.V.; Verboven, P.; Cronjé, P. Integral performance evaluation of the fresh-produce cold chain: A case study for ambient loading of citrus in refrigerated containers. Postharvest Biol. Technol. 2016, 112, 1–13. [Google Scholar] [CrossRef]
- Trias, F.X.; Oliet, C.; Rigola, J.; Pérez-Segarra, C.D. A simple optimization approach for the insulation thickness distribution in household refrigerators. Int. J. Refrig. 2018, 93, 169–175. [Google Scholar] [CrossRef]
- Thiessen, S.; Knabben, F.T.; Melo, C.; Gonçalves, J.M. A study on the effectiveness of applying vacuum insulation panels in domestic refrigerators. Int. J. Refrig. 2018, 96, 10–16. [Google Scholar] [CrossRef]
- Hammond, E.C.; Evans, J.A. Application of Vacuum Insulation Panels in the cold chain–Analysis of viability. Int. J. Refrig. 2014, 47, 58–65. [Google Scholar] [CrossRef]
- Smale, N.J.; Moureh, J.; Cortella, G. A review of numerical models of airflow in refrigerated food applications. Int. J. Refrig. 2006, 29, 911–930. [Google Scholar] [CrossRef]
- Sajadiye, S.M.; Zolfaghari, M. Simulation of in-line versus staggered arrays of vented pallet boxes for assessing cooling performance of orange in cool storage. Appl. Therm. Eng. 2017, 115, 337–349. [Google Scholar] [CrossRef]
- Moureh, J.; Flick, D. Airflow pattern and temperature distribution in a typical refrigerated truck configuration loaded with pallets. Int. J. Refrig. 2004, 27, 464–474. [Google Scholar] [CrossRef]
- Kayansayan, N.; Alptekin, E.; Ezan, M.A. Thermal analysis of airflow inside a refrigerated container. Int. J. Refrig. 2017, 84, 76–91. [Google Scholar] [CrossRef]
- Jara, P.B.T.; Rivera, J.J.A.; Merino, C.E.B.; Silva, E.V.; Farfán, G.A. Thermal behavior of a refrigerated vehicle: Process simulation. Int. J. Refrig. 2019, 100, 124–130. [Google Scholar] [CrossRef]
- Han, J.; Zhu, W.; Ji, Z. Comparison of veracity and application of different CFD turbulence models for refrigerated transport. Artif. Intell. Agric. 2019, 3, 11–17. [Google Scholar]
- Yang, T.; Wang, C.; Sun, Q.; Wennersten, R. Study on the application of latent heat cold storage in a refrigerated warehouse. Energy Procedia 2017, 142, 3546–3552. [Google Scholar] [CrossRef]
- Xie, R.; Tang, H.; Tao, W.; Liu, G.; Liu, J.; Wu, J. Optimization of cold-plate location in refrigerated vehicles based on simulation and test of no-load temperature field. Trans. Chin. Soc. Agric. Eng. 2017, 33, 290–298. [Google Scholar]
- Guo, J.; Fang, S.; Zeng, Z.; Lu, H.; Lü, E. Numerical simulation and experimental verification on humidity field for pipeline humidifying device. Trans. Chin. Soc. Agric. Eng. 2015, 31, 57–64. [Google Scholar]
- Cheng, W.; Yuan, X. Numerical analysis of a novel household refrigerator with shape-stabilized PCM (phase change material) heat storage condensers. Energy 2013, 59, 265–276. [Google Scholar] [CrossRef]
- Chourasia, M.K.; Goswami, T.K. Simulation of Effect of Stack Dimensions and Stacking Arrangement on Cool-down Characteristics of Potato in a Cold Store by Computational Fluid Dynamics. Bioprocess Eng. 2007, 96, 503–515. [Google Scholar] [CrossRef]
- Clarke, H.; Martinez-Herasme, A.; Crookes, R.; Wen, D.S. Experimental study of jet structure and pressurisation upon liquid nitrogen injection into water. Int. J. Multiph. Flow 2010, 36, 940–949. [Google Scholar] [CrossRef]
- Ho, S.H.; Rosario, L.; Rahman, M.M. Numerical simulation of temperature and velocity in a refrigerated warehouse. Int. J. Refrig. 2010, 33, 1015–1025. [Google Scholar] [CrossRef]
- Choi, S.; Burgess, G. Practical mathematical model to predict the performance of insulating packages. Packag. Technol. Sci. 2007, 20, 369–380. [Google Scholar] [CrossRef]
- Fang, G.Y.; LI, H. Automobile Air Conditioning Technology, 1st ed.; China Machine Press: Beijing, China, 2002; pp. 88–89. [Google Scholar]
- Wang, D.B.; Song, Q.W. Optimum design insulated body of refrigerated van. J. Jiangsu Ins. Technol. 1993, 14, 13–18. [Google Scholar]
- Guo, J.; Lü, E.; Lu, H.; Wang, Y.; Zhao, J. Numerical Simulation of Gas Exchange in Fresh-keeping Transportation Containers with a Controlled Atmosphere. Food Sci. Technol. Res. 2016, 22, 429–441. [Google Scholar] [CrossRef] [Green Version]
- Hahn, M.; Drikakis, D. Large-eddy simulation of compressible turbulence using high-resolution methods. Int. J. Numer. Methods Fluids 2005, 47, 971–977. [Google Scholar] [CrossRef]
- Tsoutsanis, P.; Antoniadis, A.F.; Drikakis, D. WENO schemes on arbitrary unstructured meshes for laminar, transitional and turbulent flow. J. Comput. Phys. 2014, 256, 254–276. [Google Scholar] [CrossRef]
- Thornber, B.J.R.; Drikakis, D. Numerical dissipation of upwind schemes in low Mach flow. Int. J. Numer. Methods Fluids 2008, 56, 1535–1541. [Google Scholar] [CrossRef]
- Söylemez, E.; Alpman, E.; Onat, A.; Yükselentürk, Y.; Hartomacıoğlu, S. Numerical (CFD) and experimental analysis of hybrid household refrigerator including thermoelectric and vapour compression cooling systems. Int. J. Refrig. 2019, 99, 300–315. [Google Scholar] [CrossRef]
- Aslam Bhutta, M.M.; Hayat, N.; Bashir, M.H.; Khan, A.R.; Ahmad, K.N.; Khan, S. CFD applications in various heat exchangers design: A review. Appl. Therm. Eng. 2012, 32, 1–12. [Google Scholar] [CrossRef]
- Jaramillo, J.E.; Pérez-Segarra, C.; Oliva, A.; Claramunt, K. Analysis of different RANS models applied to turbulent forced convection. Int. J. Heat Mass Transfer. 2007, 50, 3749–3766. [Google Scholar] [CrossRef]
- Ambaw, A.; Bessemans, N.; Gruyters, W.; Gwanpua, S.G.; Schenk, A.; De Roeck, A.; Delele, M.A.; Verboven, P.; Nicolai, B.M. Analysis of the spatiotemporal temperature fluctuations inside an apple cool store in response to energy use concerns. Int. J. Refrig. 2016, 66, 156–168. [Google Scholar] [CrossRef] [Green Version]
- Alzuwaid, F.A.; Ge, Y.T.; Tassou, S.A.; Sun, J. The novel use of phase change materials in an open type refrigerated display cabinet: A theoretical investigation. Appl. Energy 2016, 180, 76–85. [Google Scholar] [CrossRef] [Green Version]
Materials | Density (kg/m3) | Thermal Conductivity (W/(m·K)) |
---|---|---|
VIP | 280 | 0.0048 |
PU | 45 | 0.0244 |
GFRP | 1800 | 0.4651 |
Name | Inlet | Outlet | Products | Wall |
---|---|---|---|---|
Boundary condition | Velocity inlet | Pressure outlet | Porous zone | Convection |
Velocity (m/s) | 16 | - | - | - |
Temperature (K) | UDF | 281.15 | - | 308.15 |
Pressure (Pa) | - | 0 | - | - |
Viscous resistance (1/m2) | - | - | 19,441 | - |
Inertial resistance (1/m) | - | - | 0.06 | - |
Heat transfer coefficient (W/m2K) | - | - | - | 0.13734 |
Items | 4 m/s | 8 m/s | 12 m/s | 16 m/s |
---|---|---|---|---|
Average temperature (AT; °C) | 6.29 | 5.27 | 4.25 | 3.95 |
Standard deviation (STEDV) | 1.63 | 1.89 | 1.86 | 1.44 |
Coefficient of inhomogeneity (COI) | 2.74 | 3.96 | 4.32 | 5.35 |
Items | L0 | L1 | L2 | L3 |
---|---|---|---|---|
Average temperature (AT; °C) | 4.25 | 4.13 | 4.62 | 4.95 |
Standard deviation (STEDV) | 1.86 | 0.87 | 1.51 | 1.49 |
Coefficient of inhomogeneity (COI) | 4.32 | 2.10 | 3.3 | 2.68 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, B.; Guo, J.; Xia, J.; Wei, X.; Shen, H.; Cao, Y.; Lu, H.; Lü, E. Temperature Distribution in Insulated Temperature-Controlled Container by Numerical Simulation. Energies 2020, 13, 4765. https://doi.org/10.3390/en13184765
Li B, Guo J, Xia J, Wei X, Shen H, Cao Y, Lu H, Lü E. Temperature Distribution in Insulated Temperature-Controlled Container by Numerical Simulation. Energies. 2020; 13(18):4765. https://doi.org/10.3390/en13184765
Chicago/Turabian StyleLi, Bin, Jiaming Guo, Jingjing Xia, Xinyu Wei, Hao Shen, Yongfeng Cao, Huazhong Lu, and Enli Lü. 2020. "Temperature Distribution in Insulated Temperature-Controlled Container by Numerical Simulation" Energies 13, no. 18: 4765. https://doi.org/10.3390/en13184765
APA StyleLi, B., Guo, J., Xia, J., Wei, X., Shen, H., Cao, Y., Lu, H., & Lü, E. (2020). Temperature Distribution in Insulated Temperature-Controlled Container by Numerical Simulation. Energies, 13(18), 4765. https://doi.org/10.3390/en13184765