A Novel Cascaded Multilevel Converter Topology Based on Three-Phase Cells—CHB-SDC †
Abstract
:1. Introduction
2. Multilevel Topologies’ Comparison
3. The CHB-SDC Analysis
3.1. The CHB-SDC Topology
3.2. Converter Short-Circuit States Analysis
4. Model Predictive Control
4.1. STATCOM Model Predictive Control
4.2. Cost Function
5. Experimental Results
5.1. Real-Time Platform
5.2. Results
5.2.1. Equal DC-Link Voltage Ripple
5.2.2. Equal Capacitance
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Camargo, R.S.; Nunes, W.T.; Dallapicula, D.M.; Encarnacao, L.F.; Simonetti, D.S.L. Design and Analysis Methodology for Modular Multilevel Converters (MMC). IEEE Lat. Am. Trans. 2018, 16, 1105–1112. [Google Scholar] [CrossRef]
- Zhang, G.; Li, Z.; Zhang, B.; Halang, A.W. Power Electronic Converters: Past, Present and Future. Renew. Sustain. Energy Rev. 2018, 81, 2028–2044. [Google Scholar] [CrossRef]
- Acha, E.; Agelidis, V.; Anaya-Lara, O.; Miller, T.J.E. Power Electronic Control in Electrical Systems, 1st ed.; Newnes: Oxford, UK, 2002. [Google Scholar]
- Peña-Alzola, R.; Roldán-Pérez, J.; Emilio, B.; Huerta, F.; Campos-Gaona, D.; Liserre, M.; Burt, G. Robust Active Damping in LCL-Filter-Based Medium-Voltage Parallel Grid Inverters for Wind Turbines. IEEE Trans. Power Electron. 2018, 33, 10846–10857. [Google Scholar] [CrossRef] [Green Version]
- Feng, L.; Qunru, Z.; Qian, W. Research on reactive power compensation optimization design based on equivalent model of offshore wind farm. In Proceedings of the 2014 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC), Hong Kong, China, 7–10 December 2014. [Google Scholar]
- Zhang, W.; Zhang, X.; Liu, W.; Li, W. Modeling and simulation of aviation static inverter based on dymola and modelica. In Proceedings of the IEEE International Conference on Aircraft Utility Systems (AUS), Beijing, China, 10–12 October 2016. [Google Scholar]
- Nunes, W.T.; Encarnação, L.F.; Aredes, M. An Improved Asymmetric Cascaded Multilevel D–STATCOM with Enhanced Hybrid Modulation. Electronics 2015, 4, 311–328. [Google Scholar] [CrossRef] [Green Version]
- Freitas, W.; Morelato, A.; Xu, W.; Fujio, S. Impacts of AC Generators and DSTATCOM Devices on the Dynamic Performance of Distribution Systems. IEEE Trans. Power Deliv. 2005, 20, 1493–1501. [Google Scholar] [CrossRef]
- Camargo, R.S.; Mayor, S.D.; Fernandes, L.D.M.; Miguel, A.M.; Bueno, E.J.; Encarnação, L.F. A Novel Cascaded Multilevel Converter Topology Based on Three-Phase Cells with Model Predictive Control. In Proceedings of the 29th IEEE International Symposium on Industrial Electronics, Delft, The Netherlands, 17–19 June 2020. [Google Scholar]
- Maswood, I.; Tafti, H.D. Advanced Multilevel Converters and Applications in Grid Integration; Wiley: Hoboken, NJ, USA, 2019. [Google Scholar]
- de Oliveira, V.R.; Renner, S.C.; Bueno, E.J.; Encarnação, L.F. Predictive Control on Multilevel Back-to-Back Cascade H-Bridge Driving an Induction Motor. In Proceedings of the 29th IEEE International Symposium on Industrial Electronics, Delft, The Netherlands, 17–19 June 2020. [Google Scholar]
- Bifaretti, S.; Zanchetta, P.; Watson, A.; Tarisciotti, L.; Clare, J.C. Advanced power electronic conversion and control system for universal and flexible power management. IEEE Trans. Smart Grid 2011, 2, 231–243. [Google Scholar] [CrossRef]
- Bhosale, S.S.; Bhosale, Y.N.; Chavan, U.M.; Malvekar, S.A. Power Quality Improvement by Using UPQC: A Review. In Proceedings of the 2018 International Conference on Control, Power, Communication and Computing Technologies (ICCPCCT), Kannur, India, 23–24 March 2018. [Google Scholar]
- Ma, Y.; Huang, A.; Zhou, X. A Review of STATCOM on The Electric Power System. In Proceedings of the 2015 IEEE International Conference on Mechatronics and Automation (ICMA), Beijing, China, 2–5 August 2015. [Google Scholar]
- Shinde, O.K.; Pulavarthi, V.B. STATCOM converters and control: A review. In Proceedings of the 2017 International Conference on Data Management, Analytics and Innovation (ICDMAI), Pune, India, 24–26 February 2017. [Google Scholar]
- She, X.; Huang, A.Q. Solid State Transformer in the Future Electrical System. In Proceedings of the IEEE Power and Energy General Meeting (PES), Vancouver, BC, Canada, 21–25 July 2013. [Google Scholar]
- Oliveira, F.S.; Encarnação, L.F.; Camargo, R.S.; Bueno, E.J. Multilevel Back-to-Back Cascaded H-Bridge Converter with Model Predictive Control. In Proceedings of the IECON 2019—45th Annual Conference of the IEEE Industrial Electronics Society, Lisbon, Portugal, 14–17 October2019. [Google Scholar]
- Wang, L.; Truong, D.-N. Stability Enhancement of DFIG-Based Offshore Wind Farm Fed to a Multi-Machine System Using a STATCOM. IEEE Trans. Power Syst. 2013, 28, 2882–2889. [Google Scholar] [CrossRef]
- Nabae, A.; Takahashi, I.; Akagi, H. A New Neutral-Point Clamped PWM Inverter. IEEE Trans. Ind. Appl. 1981, IA-17, 518–523. [Google Scholar] [CrossRef]
- Meynard, T.A.; Fadel, M.; Aouda, N. Modeling of Multilevel Converters. IEEE Trans. Semiconduct. Ind. Electron. 1997, 44, 356–364. [Google Scholar] [CrossRef]
- Leniscar, A.; Marquard, R. An Innovative Modular Multilevel Converter Topology Suitable for a Wide Power Range. In Proceedings of the IEEE Bologna PowerTech Conference, Bologna, Italy, 23–26 June 2003. [Google Scholar]
- Akagi, H. Classification, Terminology, and Application of the Modular Multilevel Cascade Converter (MMCC). IEEE Trans. Power Electron. 2011, 26, 3119–3130. [Google Scholar] [CrossRef]
- Rodriguez, J.-S.; Lai, F.; Zheng, P. Multilevel inverters: A survey of topologies, controls, and applications. IEEE Trans. Ind. Electron. 2002, 49, 724–738. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Li, Y. A Survey on Topologies of Multilevel Converters and Study of Two Novel Topologies. In Proceedings of the 2009 IEEE 6th International Power Electronics and Motion Control Conference, Wuhan, China, 17–20 May 2009. [Google Scholar]
- Khomfoi, S.; Tolbert, L.M. Chapter 17 Multilevel Power Converter. In Power Electronics Handbook, Devices, Circuits and Applications; Elsevier: Amsterdam, The Netherlands, 2005. [Google Scholar]
- Bum-Seok, S.; Sinha, G.; Manjrekar, M.D.; Lipo, T.A. Multilevel Power Conversion—An Overview of Topologies and Modulation Strategies. In Proceedings of the 6th International Conference on Optimization of Electrical and Electronic Equipment, Brasov, Romania, 14–15 May 1998; Volume 2. [Google Scholar]
- Miranbeigi, M.; Iman-Eini, H.; Asoodar, M. A new switching strategy for transformer-less back-to-back cascaded H-bridge multilevel converter. IET Power Electron. 2014, 7, 1868–1877. [Google Scholar] [CrossRef]
- Davari, P.; Zare, F.; Abdelhakim, A. Active Rectifiers and Their Control. In Control of Power Electronic Converters and Systems; Elsevier: London, UK, 2018; Volume 2. [Google Scholar]
- Gu, L.; Ruan, X.; Xu, M.; Yao, K. Means of Eliminating Electrolytic Capacitor in AC/DC Power Supplies for LED Lightings. IEEE Trans. Power Electron. 2009, 24, 1399–1408. [Google Scholar] [CrossRef]
- Kjaer, S.B.; Pedersen, J.K.; Blaabjerg, F. A Review of Single-Phase Grid-Connected Inverters for Photovoltaic Modules. IEEE Trans. Ind. Appl. 2005, 41, 1292–1306. [Google Scholar] [CrossRef]
- Kashihara, Y.; Itoh, J.-I. The performance of the multilevel converter topologies for PV inverter. In Proceedings of the 2012 7th International Conference on Integrated Power Electronics Systems (CIPS), Nuremberg, Germany, 6–8 March 2012. [Google Scholar]
- Krein, P.T.; Balog, R.S.; Mirjafari, M. Minimum Energy and Capacitance Requirements for Single-Phase Inverters and Rectifiers Using a Ripple Port. IEEE Trans. Power Electron. 2012, 27, 4690–4698. [Google Scholar] [CrossRef]
- Merlin, M.M.C.; Green, T.C.; Mitcheson, P.D.; Moreno, F.J.; Dyke, K.J.; Trainer, D.R. Cell capacitor sizing in modular multilevel converters and hybrid topologies. In Proceedings of the 2014 16th European Conference on Power Electronics and Applications, Lappeenranta, Finland, 26–28 August 2014. [Google Scholar]
- Najmi, V.; Wang, J.; Burgos, R.; Boroyevich, D. Reliability modeling of capacitor bank for Modular Multilevel Converter based on Markov State-Space Model. In Proceedings of the 2015 IEEE Applied Power Electronics Conference and Exposition (APEC), Charlotte, NC, USA, 15–19 March 2015. [Google Scholar]
- Barbi, I. Eletrônica de Potência; UFSC: Santa Catarina, Brazil, 2002. [Google Scholar]
- Mechouma, R.; Azoui, B.; Chaabane, M. Three-Phase Grid Connected Inverter for Photovoltaic Systems, a Review. In Proceedings of the 2012 First International Conference on Renewable Energies and Vehicular Technology, Hammamet, Tunisia, 26–28 March 2012. [Google Scholar]
- Alfonso-Gil, J.C.; Gimeno-Sales, F.; Segui-Chilet, S.; Orts, S.; Calvo, J.; Fuster, V. New optimization in photovoltaic installations with energy balance with the three-phase utility. In Proceedings of the IEEE International Symposium on Industrial Electronics, ISIE 2005, Dubrovnik, Croatia, 20–23 June2005. [Google Scholar]
- de Iiveira, V.M.R.; Camargo, R.S.; Encarnação, L.F.; Bueno, E.J. Field Oriented Predictive Current Control on NPC Driving an Induction Motor. In Proceedings of the 2020 IEEE International Conference on Industrial Technology (ICIT), Buenos Aires, Argentina, 26–28 February 2020. [Google Scholar]
- Oliveira, F.S.; Encarnação, L.F.; Camargo, R.S.; Bueno, E. Model Predictive Control on Back-to-Back Parallel-Series Cascaded H-Bridge Converters. In Proceedings of the 2019 IEEE PES Innovative Smart Grid Technologies Europe (ISGT-Europe), Bucharest, Romania, 29 September–2 October 2019. [Google Scholar]
- Rodriguez, P.; Teodorescu, R.; Candela, I.; Liserre, M.; Blaabjerg, F. New positive-sequence voltage detector for grid synchronization of power converters under faulty grid conditions. In Proceedings of the 2006 37th IEEE Power Electronics Specialists Conference, Jeju, Korea, 18–22 June 2006. [Google Scholar]
- Kouro, S.; Cortes, P.; Vargas, R.; Ammann, U.; Rodriguez, J. Model predictive control: A simple and powerful method to control power converters. IEEE Trans. Ind. Electron. 2009, 56, 1826–1838. [Google Scholar] [CrossRef]
- Rodriguez, J.; Pont, J.; Correa, P.; Lezana, P.; Cortes, P. Predictive Power Control of an AC/DC/AC. em Fourtieth IAS Annual Meeting. In Proceedings of the Conference Record of the 2005 Industry Applications Conference, Kowloon, Hong Kong, China, 2–6 October2005. [Google Scholar]
- Vazquez, S.; Rodriguez, J.; Rivera, M. Model Predictive Control for Power Converters and Drives: Advances and Trends. IEEE Trans. Ind. Electron. 2017, 64, 935–947. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez, J.V.; Bueno, E.J.; Larrea, P.L.; Duarte, H.A.; Rodriguez, A. Dynamic performance of a STATCOM under grid disturbances for two different linear controllers. In Proceedings of the IECON 2012—38th Annual Conference on IEEE Industrial Electronics Society, Montreal, QC, Canada, 25–28 October 2012. [Google Scholar]
- Tarisciotti, L.; Burgos, C.; Garcia, C.; Rodriguez, J. Finite Control Set Model Predictive Control of parallel three-phase active rectifiers. In Proceedings of the 2020 IEEE International Conference on Industrial Technology (ICIT), Buenos Aires, Argentina, 26–28 February 2020. [Google Scholar]
- Tarisciotti, L.; Formentini, A.; Gaeta, A.; Degano, M.; Zanchetta, P.; Rabbeni, R.; Pucci, M. Model Predictive control for Shunt Active Filters with Fixed Switching Frequency. IEEE Trans. Ind. Appl. 2016, 5, 296–304. [Google Scholar] [CrossRef]
- Tarisciotti, L.; Zanchetta, P.; Watson, A.; Bifaretti, S.; Clare, J.C. Modulated Model Predictive Control for a Seven-Level Cascaded H-Bridge Back-to-Back Converter. IEEE Trans. Ind. Electron. 2014, 61, 5375–5383. [Google Scholar] [CrossRef] [Green Version]
- Tianqi, L.; Youyin, W.; Zhanjun, L.; Meijun, L.; Weimao, X.; Yunche, S.; Zhijian, C.; Na, Z. Reactive Power Compensation and Control Strategy for MMC-STATCOM Doubly-Fed Wind Farm. In Proceedings of the 2019 IEEE Innovative Smart Grid Technologies—Asia (ISGT Asia), Chengdu, China, 21–24 May 2019. [Google Scholar]
- Roldán-Pérez, J.; Ávila-Martínez, R.; Rodríguez-Cabero, A.; Prodanovic, M.; Bueno, E. LTCL-Filter Active-Damping Design Considerations for Low-Switching-Frequency Grid-Tied VSCs. In Proceedings of the IECON 2018—44th Annual Conference of the IEEE Industrial Electronics Society, Washington, DC, USA, 21–23 October 2018. [Google Scholar]
- Xiao, Y.; Wang, Y. Reactive Power Optimal Control of aWind Farm for Minimizing Collector System Losses. Energies 2018, 11, 3177. [Google Scholar] [CrossRef] [Green Version]
- Akagi, H.; Watanabe, E.H.; Aredes, M. Instantaneous Power Theory and Applications to Power Conditions; John Wiley and Sons Inc.: Hoboken, NJ, USA, 2007. [Google Scholar]
- Akagi, H.; Inoue, S.; Yoshii, T. Control and Performance of a Transformerless Cascade PWM STATCOM with Star Configuration. IEEE Trans. Ind. Appl. 2007, 43, 1041–1049. [Google Scholar] [CrossRef]
- Wu, C.-H.; Xu, Y.-X. The Optimal Control of Fuel Consumption for a Heavy-Duty Motorcycle with Three Power Sources Using Hardware-in-the-Loop Simulation. Energies 2020, 13, 22. [Google Scholar] [CrossRef] [Green Version]
- Sanchez, P.M.; Machado, O.; Bueno, E.; Rodriguez, F.J.; Meca, F.J. FPGA-Based Implementation of a Predictive Current Controller for Power Converters. IEEE Trans. Ind. Inform. 2012, 9, 1312–1321. [Google Scholar] [CrossRef]
- IEEE Std 519. IEEE Recommended Practice and Requirements for Harmonic Control in Electric Power Systems; IEEE Standard Association: Piscataway, NJ, USA, 2014.
- IEC 61000-4-7:2002/AMD1:2008. International Standard—Electromagnetic Compatibility (EMC)—Part 4–7: Testing and Measurement Techniques; International Electrotechnical Commission: Geneva, Switzerland, 2008.
- Saha, C.; Singh, A.K. A Review Article on Fault-Tolerant Control (FTC) and Fault Detection Isolation (FDI) Schemes of Wind Turbine. In Proceedings of the Second International Conference on Microelectronics, Computing & Communication Systems (MCCS 2017), Jharkhand, India, 13–14 May 2017. [Google Scholar]
- Yang, X.; Maciejowski, J. Fault-tolerant model predictive control of a wind turbine benchmark. In Proceedings of the 8th IFAC Symposium on Fault Detection, Mexico City, Mexico, 8–11 June 2012. [Google Scholar]
- Ju, Z.; Zhang, H.; Tan, Y. Distributed Deception Attack Detection in Platoon-Based Connected Vehicle Systems. IEEE Trans. Veh. Technol. 2020, 69, 4609–4620. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, J. Active Steering Actuator Fault Detection for an Automatically-steered Electric Ground Vehicle. IEEE Trans. Veh. Technol. 2017, 66, 3685–3702. [Google Scholar] [CrossRef]
Topology | Number of Components | Modularity | Oscillation |
DCMC | very high | no | no |
CCMC | high | no | no |
MHMC (DCMC) | high | yes | yes |
MHMC (CCMC) | high | yes | yes |
MMC | low | yes | yes |
CHB | low | yes | yes |
CHB-SDC | very low | yes | no |
Parameter | Symbol | CHB Equal Ripple | CHB Equal Capacitance | CHB-SDC |
Rms grid line voltage | ||||
Grid frequency | ||||
STATCOM power | ||||
MPC time step | - | - | ||
Sampling time | ||||
Carrier frequency | - | |||
Damping inductance | ||||
Filter inductance | l | |||
Filter resistance | r | |||
DC-link voltage | ||||
DC-link capacitance | ||||
total capacitance |
Operation Mode | CHB Equal Ripple | CHB Equal Capacitors | CHB-SDC |
---|---|---|---|
inductive mode | |||
capacitive mode |
CHB Same Ripple | CHB Same Capacitors | CHB-SDC | |
---|---|---|---|
number of components | 30 | 30 | 26 |
number of capacitors | 6 | 6 | 2 |
individual capacitance | 4000 µF | 1200 µF | 1200 µF |
total capacitance | 24,000 µF | 7200 µF | 2400 µF |
structure | single-phase | single-phase | three-phase |
2 ripple | yes | yes | no |
amplitude ripple | 11 V | 46 V | 11 V |
low-pass filters | 6 | 6 | 0 |
control elements | 15 | 15 | 0 |
THD inductive mode | |||
THD capacitive mode |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Camargo, R.S.; Mayor, D.S.; Miguel, A.M.; Bueno, E.J.; Encarnação, L.F. A Novel Cascaded Multilevel Converter Topology Based on Three-Phase Cells—CHB-SDC. Energies 2020, 13, 4789. https://doi.org/10.3390/en13184789
Camargo RS, Mayor DS, Miguel AM, Bueno EJ, Encarnação LF. A Novel Cascaded Multilevel Converter Topology Based on Three-Phase Cells—CHB-SDC. Energies. 2020; 13(18):4789. https://doi.org/10.3390/en13184789
Chicago/Turabian StyleCamargo, Renner Sartório, Daniel Santamargarita Mayor, Alvar Mayor Miguel, Emilio José Bueno, and Lucas Frizera Encarnação. 2020. "A Novel Cascaded Multilevel Converter Topology Based on Three-Phase Cells—CHB-SDC" Energies 13, no. 18: 4789. https://doi.org/10.3390/en13184789
APA StyleCamargo, R. S., Mayor, D. S., Miguel, A. M., Bueno, E. J., & Encarnação, L. F. (2020). A Novel Cascaded Multilevel Converter Topology Based on Three-Phase Cells—CHB-SDC. Energies, 13(18), 4789. https://doi.org/10.3390/en13184789