Evaluating Public Policies for Fair Social Tariffs of Electricity in Brazil by Using an Economic Market Model
Abstract
:1. Introduction
1.1. Motivation and Incitement
1.2. Contribution
2. Social Electricity Tariff
- 65% discount on the tariff over 30 kWh ————> (0.35*Tariff)*30 kWh = 10.5*Tariff.
- 40% discount on the tariff over 70 kWh ———–> (0.60*Tariff)*70 kWh = 42*Tariff.
- 10% discount on the tariff over 120 kWh ———–> (0.90*Tariff)*120 kWh = 108*Tariff.
3. How Distributed Generation (Dg) Can Intensify This Difference
4. Regulatory Economic Market Model
5. Simulation Results and Discussions
5.1. Southern Region
5.2. Northeastern Region
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- ANEEL. Tariff Regulation Procedures-Proret. Normative Resolution 435; Technical Report; ANEEL: Brasilia, Brazil, 2011. [Google Scholar]
- ANEEL. Normative Resolution 482; Technical Report; ANEEL: Brasilia, Brazil, 2012. [Google Scholar]
- ANEEL. Normative Resolution 492-PROINFA; Technical Report; ANEEL: Brasilia, Brazil, 2012. [Google Scholar]
- Obermaier, M.; Szklo, A.; La Rovere, E.L.; Rosa, L.P. An assessment of electricity and income distributional trends following rural electrification in poor northeast Brazil. Energy Policy 2012, 49, 531–540. [Google Scholar] [CrossRef]
- Pereira, M.G.; Freitas, M.A.V.; da Silva, N.F. Rural electrification and energy poverty: empirical evidences from Brazil. Renew. Sustain. Energy Rev. 2010, 14, 1229–1240. [Google Scholar] [CrossRef]
- IBGE. Number of CENSO 2020; IBGE: Rio de Janeiro, State of Rio de Janeiro, Brazil, 2020. [Google Scholar]
- IBGE. National Continuous Household Sample Survey-Continuous PNAD; IBGE: Rio de Janeiro, State of Rio de Janeiro, Brazil, 2019. [Google Scholar]
- ANEEL. Distribution Indicators; ANEEL: Brasilia, Brazil, 2016. [Google Scholar]
- Bodach, S.; Hamhaber, J. Energy efficiency in social housing: Opportunities and barriers from a case study in Brazil. Energy Policy 2010, 38, 7898–7910. [Google Scholar] [CrossRef]
- Primc, K.; Slabe-Erker, R.; Majcen, B. Constructing energy poverty profiles for an effective energy policy. Energy Policy 2019, 128, 727–734. [Google Scholar] [CrossRef]
- Romero, J.C.; Linares, P.; López, X. The policy implications of energy poverty indicators. Energy Policy 2018, 115, 98–108. [Google Scholar] [CrossRef]
- Benso, L.; Bonatto, B.; Arango, H.; Carvalho, L. Socioeconomic indicators for the analysis of electricity distribution concessionaires. In Proceedings of the 2018 Simposio Brasileiro de Sistemas Eletricos (SBSE), Niteroi, Brazil, 12–16 May 2018; pp. 1–5. [Google Scholar]
- Primc, K.; Slabe-Erker, R. Social policy or energy policy? Time to reconsider energy poverty policies. Energy Sustain. Dev. 2020, 55, 32–36. [Google Scholar] [CrossRef]
- Sovacool, B.K. The political economy of energy poverty: A review of key challenges. Energy Sustain. Dev. 2012, 16, 272–282. [Google Scholar] [CrossRef]
- Bouzarovski, S.; Petrova, S.; Sarlamanov, R. Energy poverty policies in the EU: A critical perspective. Energy Policy 2012, 49, 76–82. [Google Scholar] [CrossRef]
- Walker, R.; Liddell, C.; McKenzie, P.; Morris, C. Evaluating fuel poverty policy in Northern Ireland using a geographic approach. Energy Policy 2013, 63, 765–774. [Google Scholar] [CrossRef]
- Scarpellini, S.; Hernández, M.A.S.; Moneva, J.M.; Portillo-Tarragona, P.; Rodríguez, M.E.L. Measurement of spatial socioeconomic impact of energy poverty. Energy Policy 2019, 124, 320–331. [Google Scholar] [CrossRef]
- Marchand, R.; Genovese, A.; Koh, S.L.; Brennan, A. Examining the relationship between energy poverty and measures of deprivation. Energy Policy 2019, 130, 206–217. [Google Scholar] [CrossRef]
- Dobbins, A.; Nerini, F.F.; Deane, P.; Pye, S. Strengthening the EU response to energy poverty. Nat. Energy 2019, 4, 2–5. [Google Scholar] [CrossRef]
- Schleich, J. Energy efficient technology adoption in low-income households in the European Union—What is the evidence? Energy Policy 2019, 125, 196–206. [Google Scholar] [CrossRef]
- González-Eguino, M. Energy poverty: An overview. Renew. Sustain. Energy Rev. 2015, 47, 377–385. [Google Scholar] [CrossRef]
- ANEEL. Social Tariff of Electric Energy—TSEE; ANEEL: Brasilia, Brazil, 2002. [Google Scholar]
- IBGE. PNAD Continua 2017 Income from All Sources; Technical Report; IBGE: Rio de Janeiro, State of Rio de Janeiro, Brazil, 2017. [Google Scholar]
- Zubi, G.; Fracastoro, G.V.; Lujano-Rojas, J.M.; El Bakari, K.; Andrews, D. The unlocked potential of solar home systems; an effective way to overcome domestic energy poverty in developing regions. Renew. Energy 2019, 132, 1425–1435. [Google Scholar] [CrossRef]
- Bhide, A.; Monroy, C.R. Energy poverty: A special focus on energy poverty in India and renewable energy technologies. Renew. Sustain. Energy Rev. 2011, 15, 1057–1066. [Google Scholar] [CrossRef]
- Pereira, D.S.; Marques, A.C.; Fuinhas, J.A. Are renewables affecting income distribution and increasing the risk of household poverty? Energy 2019, 170, 791–803. [Google Scholar] [CrossRef]
- ANEEL. Residential Tariff; ANEEL: Brasilia, Brazil, 2020. [Google Scholar]
- ANEEL. Distributed Generation; ANEEL: Brasilia, Brazil, 2020. [Google Scholar]
- EPE. Statistical Electrical Energy Year 2020; Technical Report; EPE: Brasilia, Brazil, 2019. [Google Scholar]
- Arango, L.; Deccache, E.; Bonatto, B.; Arango, H.; Ribeiro, P.; Silveira, P. Impact of electricity theft on power quality. In Proceedings of the 2016 17th International Conference on Harmonics and Quality of Power (ICHQP), Belo Horizonte, Brazil, 16–19 October 2016; pp. 557–562. [Google Scholar]
- Pereira, L.C.; Arango, H.; Bonatto, B.D.; de Almeida, T.D.; de Carvalho Filho, J.M.; da Silveira, P.M. Implementation of an economic model for the electricity market evaluation of public policies in smart grids. In Proceedings of the 2013 IEEE PES Conference on Innovative Smart Grid Technologies (ISGT Latin America), Sao Paulo, Brazil, 15–17 April 2013; pp. 1–4. [Google Scholar]
- Pereira, L.C.; dos Santos Lusvarghi, S.A.; Arango, L.G.; Arango, H.; Bonatto, B.D. Socioeconomic analysis of incentive public policies for the use of renewable energy per consumer class in Brazil. In Proceedings of the 2015 IEEE PES Innovative Smart Grid Technologies Latin America (ISGT LATAM), Montevideo, Uruguay, 5–7 October 2015; pp. 57–62. [Google Scholar]
- Cortez, C.; Bonatto, B.D.; Arango, H.; Castilla, M. Aggregated Economic Analysis of the Brazilian Electricity Distribution Companies Using a Regulated Market Economic Model. J. Control Autom. Electr. Syst. 2020, 31, 693–704. [Google Scholar] [CrossRef]
- Arango, L.; Arango, H.; Bonatto, B.; Deccache, E.; Maciel, L.; Pamplona, E. The Impact of Quality Investment in the Electricity Market Based on a Socioeconomic Market Model Contribution. In Proceedings of the 2018 15th International Conference on the European Energy Market (EEM), Lodz, Poland, 27–29 June 2018; pp. 1–5. [Google Scholar]
- Arango, L.; Arango, H.; Deccache, E.; Bonatto, B.; Pamplona, E. Economic Evaluation of Regulatory Tariff Risk Planning for an Electric Power Company. J. Control Autom. Electr. Syst. 2019, 30, 292–300. [Google Scholar] [CrossRef]
- Burrell, Q.L. The GINI index and the Leimkuhler curve for bibliometric processes. Inform. Process. Manag. 1992, 28, 19–33. [Google Scholar] [CrossRef]
- Wenli, F.; Ping, H.; Zhigang, L. Multi-attribute node importance evaluation method based on GINI-coefficient in complex power grids. IET Gener. Trans. Distrib. 2016, 10, 2027–2034. [Google Scholar] [CrossRef]
- Gastwirth, J.L. The estimation of the Lorenz curve and GINI index. The Rev. Econ. Stat. 1972, 54, 306–316. [Google Scholar] [CrossRef]
- Okushima, S. Gauging energy poverty: A multidimensional approach. Energy 2017, 137, 1159–1166. [Google Scholar] [CrossRef] [Green Version]
- ANEEL. Timetable and Results of Distribution Tariff Processes; ANEEL: Brasilia, Brazil, 2020. [Google Scholar]
Monthly Consumption Parcel of Electrical Energy (MCP) | Discount |
---|---|
MCP ≤ 30 kWh | 65% |
30 kWh < MCP ≤ 100 kWh | 40% |
100 kWh < MCP ≤ 220 kWh | 10% |
MCP > 220 kWh | 0% |
Tracking by Region 2018 | |||||
---|---|---|---|---|---|
Number of Consumers Units | Monthly Required | ||||
Region | Income Income | % Low Income/ | % Low Income/ | Revenue | |
Residential | Region | % Toatl Low Income | Difference (R$) | % | |
Midwest | 411,772 | 7.75 | 4.81 | 10,167,512.45 | 5.16 |
Southeast | 2,120,577 | 6.38 | 24.79 | 50,900,428.45 | 25.82 |
South | 521,402 | 5.00 | 6.10 | 11,903,791.58 | 6.04 |
Northeast | 4,702,221 | 24.59 | 54.98 | 101,975,446.60 | 51.72 |
North | 796,586 | 18.76 | 9.31 | 22,313,699.55 | 11.27 |
BRAZIL | 8,552,558 | 11.80 | 100.00 | 197,160,879.09 | 100.00 |
GINI Index | Population Distribution [%] | Average Income [R$] | Average Consumption of Electrical Energy [TWh] | Average Energy Tariff [R$/MWh] | |
---|---|---|---|---|---|
Midwest | 0.536 | 7.60 | 2512.00 | 28.18 | 599.23 |
South | 0.477 | 14.30 | 2397.00 | 57.38 | 579.06 |
Southeast | 0.529 | 42.00 | 2475.00 | 147.08 | 593.51 |
Northeast | 0.567 | 27.60 | 1509.00 | 60.76 | 546.82 |
North | 0.544 | 8.50 | 1630.00 | 20.26 | 628.79 |
Brazil | 0.549 | 100.00 | 2178.00 | 313.65 | 584.61 |
DATA | COELBA | COSERN | CEPISA | CELPE | CEMAR | ENEL CEARÁ |
---|---|---|---|---|---|---|
B [MR$] | 8739.81 | 1404.31 | 1160.73 | 5654.78 | 3822.26 | 3515.57 |
[%] | 7.50 | 7.50 | 7.50 | 8.09 | 8.09 | 8.09 |
d [%] | 3.86 | 3.93 | 3.99 | 3.96 | 3.82 | 3.84 |
[MR$] | 7272.31 | 1796.92 | 1536.06 | 4523.48 | 3082.30 | 4130.08 |
E [TWh] | 19.87 | 5.58 | 4.51 | 13.57 | 7.54 | 11.36 |
LOSSES [MR$] | 2211.24 | 112.80 | 206.67 | 1486.84 | 466.24 | 529.97 |
[R$/MWh] | 609.94 | 479.29 | 525.11 | 575.48 | 690.02 | 572.79 |
t [%] | 34 | 34 | 34 | 34 | 34 | 34 |
[%] | 22 | 29 | 31 | 25 | 38 | 31 |
Average Income [R$] | 862.00 | 845.00 | 750.00 | 852.00 | 597.00 | 824.00 |
DATA | RGE SUL | COPEL | CELESC |
---|---|---|---|
B [MR$] | 3604.90 | 9170.99 | 5731.21 |
[%] | 8.09 | 8.09 | 8.09 |
d [%] | 3.87 | 3.68 | 3.78 |
[MR$] | 3308.18 | 9636.72 | 7623.20 |
E [TWh] | 7.74 | 23.22 | 17.98 |
LOSSES [MR$] | 196.52 | 583.51 | 481.58 |
[R$/MWh] | 659.79 | 641.19 | 617.99 |
t [%] | 34 | 34 | 34 |
[%] | 5 | 8 | 3 |
Average Income [R$] | 1635.00 | 1472.00 | 1597.00 |
Before Public Policy | ||||||
---|---|---|---|---|---|---|
(1 − − ) | ||||||
COELBA | 0.55 | 0.05 | 0.4 | 0.20 | 0.22 | 0.58 |
COSERN | 0.55 | 0.05 | 0.4 | 0.20 | 0.29 | 0.51 |
CEPISA | 0.55 | 0.05 | 0.4 | 0.20 | 0.31 | 0.49 |
CELPE | 0.55 | 0.05 | 0.4 | 0.20 | 0.25 | 0.55 |
CEMAR | 0.55 | 0.05 | 0.4 | 0.20 | 0.38 | 0.42 |
ENEL CEARÁ | 0.55 | 0.05 | 0.4 | 0.20 | 0.31 | 0.49 |
Before Public Policy | ||||||
---|---|---|---|---|---|---|
(1 − − ) | ||||||
RGE SUL | 0.55 | 0.05 | 0.4 | 0.20 | 0.05 | 0.75 |
COPEL | 0.55 | 0.05 | 0.4 | 0.20 | 0.08 | 0.72 |
CELESC | 0.55 | 0.05 | 0.4 | 0.20 | 0.03 | 0.77 |
DATA | COELBA | COSERN | CEPISA | CELPE | CEMAR | ENEL |
---|---|---|---|---|---|---|
CEARÁ | ||||||
a [R$/MWh] | 9590.04 | 7656.97 | 8045.11 | 8986.26 | 10,974.97 | 8888.50 |
b [R$/MWh] | 457.51 | 1301.24 | 1690.01 | 627.66 | 1380.54 | 741.94 |
p [R$/MWh] | 29,457.29 | 9694.85 | 10,159.88 | 28,158.37 | 41,367.54 | 15,429.11 |
e [R$/MWh] | 366.02 | 322.17 | 340.42 | 333.32 | 409.05 | 363.71 |
DATA | REG SUL | COPEL | CELESC |
---|---|---|---|
a [R$/MWh] | 10,133.77 | 9723.49 | 9760.55 |
b [R$/MWh] | 1241.31 | 396.97 | 514.66 |
p [R$/MWh] | 15,745.74 | 13,231.76 | 11,203.29 |
e [R$/MWh] | 427.52 | 415.07 | 424.07 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maciel, L.d.S.B.; Bonatto, B.D.; Arango, H.; Arango, L.G. Evaluating Public Policies for Fair Social Tariffs of Electricity in Brazil by Using an Economic Market Model. Energies 2020, 13, 4811. https://doi.org/10.3390/en13184811
Maciel LdSB, Bonatto BD, Arango H, Arango LG. Evaluating Public Policies for Fair Social Tariffs of Electricity in Brazil by Using an Economic Market Model. Energies. 2020; 13(18):4811. https://doi.org/10.3390/en13184811
Chicago/Turabian StyleMaciel, Leticia dos Santos Benso, Benedito Donizeti Bonatto, Hector Arango, and Lucas Gustavo Arango. 2020. "Evaluating Public Policies for Fair Social Tariffs of Electricity in Brazil by Using an Economic Market Model" Energies 13, no. 18: 4811. https://doi.org/10.3390/en13184811
APA StyleMaciel, L. d. S. B., Bonatto, B. D., Arango, H., & Arango, L. G. (2020). Evaluating Public Policies for Fair Social Tariffs of Electricity in Brazil by Using an Economic Market Model. Energies, 13(18), 4811. https://doi.org/10.3390/en13184811