Size-Dependent and Enhanced Photovoltaic Performance of Solar Cells Based on Si Quantum Dots
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Shockley, W.; Queisser, H.J. Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys. 1961, 32, 510–519. [Google Scholar] [CrossRef]
- Green, M.A. Third Generation Photovoltaics: Advanced Solar Energy Conversion; Springer: Berlin, Germany, 2003; pp. 35–66. [Google Scholar]
- Yamamoto, A.; Tsujino, M.; Ohkubo, M.; Hashimoto, A. Metalorganic chemical vapor deposition growth of InN for InN/Si tandem solar cell. Sol. Energy Mater. Sol. Cells 1994, 35, 53–60. [Google Scholar] [CrossRef]
- Lunardi, M.M.; Moore, S.; Alvarez-Gaitan, J.P.; Yan, C.; Hao, X.J.; Corkish, R. A comparative life cycle assessment of chalcogenide/Si tandem solar modules. Energy 2018, 145, 700–709. [Google Scholar] [CrossRef]
- Meillaud, F.; Shah, A.; Droz, C.; Vallat-Sauvain, E.; Miazza, C. Efficiency limits for single-junction and tandem solar cells. Sol. Energy Mater. Sol. Cells 2006, 90, 2952–2959. [Google Scholar] [CrossRef] [Green Version]
- Conibeer, G.; Green, M.; Cho, E.C.; Konig, D.; Cho, Y.H.; Fangsuwannarak, T.; Scardera, G.; Pink, E.; Huang, Y.D.; Puzzer, T.; et al. Silicon quantum dot nanostructures for tandem photovoltaic cells. Thin Solid Films 2008, 516, 6748–6756. [Google Scholar]
- Baba, M.; Makita, K.; Mizuno, H.; Takato, H.; Sugaya, T.; Yamada, N. Effect of series resistances on conversion efficiency of GaAs/Si tandem solar cells with areal current-matching technique. IEEE J. Photovolt. 2018, 8, 654–660. [Google Scholar]
- Hajijafarassar, A.; Martinho, F.; Stulen, F.; Grini, S.; López-Mariño, S.; Espíndola-Rodríguez, M.; Döbeli, M.; Canulescu, S.; Stamate, E.; Gansukh, M.; et al. Monolithic thin-film chalcogenide-silicon tandem solar cells enabled by a diffusion barrier. Sol. Energy Mater. Sol. Cells 2020, 207, 110334. [Google Scholar] [CrossRef]
- Moritz, H.; Futscher, B.E. Efficiency limit of perovskite/Si tandem solar cells. ACS Energy Lett. 2016, 1, 863–868. [Google Scholar]
- Taguchi, H.; Soga, T.; Jimbo, T. Fabrication of GaAs/Si tandem solar cell by epitaxial lift-off technique. Jpn. J. Appl. Phys. 2003, 42, 1419–1421. [Google Scholar] [CrossRef]
- Kim, B.; Toprasertpong, K.; Paszuk, A.; Supplie, O.; Nakano, Y.; Hannappel, T.; Sugiyama, M. GaAsP/Si tandem solar cells: Realistic prediction of efficiency gain by applying strain-balanced multiple quantum wells. Sol. Energy Mater. Sol. Cells 2018, 180, 303–310. [Google Scholar]
- Essig, S.; Steiner, M.A.; Allebé, C.; Geisz, J.F.; Paviet-Salomon, B.; Ward, S.; Descoeudres, A.; LaSalvia, V.; Barraud, L.; Badel, N.; et al. Realization of GaInP/Si dual-junction solar cells with 29.8% 1-sun efficiency. IEEE J. Photovolt. 2016, 6, 1012–1019. [Google Scholar] [CrossRef]
- He, C.; Han, C.B.; Xu, Y.R.; Li, X.J. Photovoltaic effect of CdS/Si nanoheterojunction array. J. Appl. Phys. 2011, 110, 094316. [Google Scholar] [CrossRef]
- Carmody, M.; Mallick, S.; Margetis, J.; Kodama, R.; Biegala, T.; Xu, D.; Bechmann, P.; Garland, J.W.; Sivananthan, S. Single-crystal II-VI on Si single-junction and tandem solar cells. Appl. Phys. Lett. 2010, 96, 153502. [Google Scholar] [CrossRef]
- Leijtens, T.; Bush, K.A.; Prasanna, R.; McGehee, M.D. Opportunities and challenges for tandem solar cells using metal halide perovskite semiconductors. Nat. Energy 2018, 3, 828–838. [Google Scholar] [CrossRef]
- Qiu, Z.W.; Xu, Z.Q.; Li, N.X.; Zhou, N.; Chen, Y.H.; Wan, X.X.; Liu, J.L.; Li, N.; Hao, X.T.; Bi, P.Q.; et al. Monolithic perovskite/Si tandem solar cells exceeding 22% efficiency via optimizing top cell absorber. Nano Energy 2018, 53, 798–807. [Google Scholar] [CrossRef]
- Jiang, Y.J.; Almansouri, I.; Huang, S.J.; Young, T.; Li, Y.; Peng, Y.; Hou, Q.C.; Spiccia, L.; Bach, U.; Cheng, Y.B.; et al. Optical analysis of perovskite/silicon tandem solar cells. J. Mater. Chem. C 2016, 4, 5679–5689. [Google Scholar] [CrossRef]
- Conibeer, G.; Perez-Wurfl, I.; Hao, X.J.; Di, D.W.; Lin, D. Si solid-state quantum dot-based materials for tandem solar cells. Nanoscale Res. Lett. 2012, 7, 193. [Google Scholar] [CrossRef] [Green Version]
- Cheng, Q.J.; Tam, E.; Xu, S.Y.; Ostrikov, K. Si quantum dots embedded in an amorphous SiC matrix: Nanophase control by non-equilibrium plasma hydrogenation. Nanoscale 2010, 2, 594–600. [Google Scholar] [CrossRef] [Green Version]
- Heitmann, J.; Muller, F.; Zacharias, M.; Gosele, U. Silicon nanocrystals: Size matters. Adv. Mater. 2005, 17, 795–803. [Google Scholar] [CrossRef]
- Uchida, G.; Yamamoto, K.; Sato, M.; Kawashima, Y.; Nakahara, K.; Kamataki, K.; Itagaki, N.; Koga, K.; Shiratani, M. Effect of nitridation of Si nanoparticles on the performance of quantum-dot sensitized solar cells. Jpn. J. Appl. Phys. 2012, 51, 01AD01. [Google Scholar] [CrossRef]
- Chang, G.R.; Ma, F.; Ma, D.Y.; Xu, K.W. Multi-band silicon quantum dots embedded in an amorphous matrix of silicon carbide. Nanotechnology 2010, 21, 465605. [Google Scholar] [PubMed]
- Cho, E.C.; Park, S.W.; Hao, X.J.; Song, D.Y.; Conibeer, G.; Park, S.C.; Green, M.A. Silicon quantum dot/crystalline silicon solar cells. Nanotechnology 2008, 19, 245201. [Google Scholar] [PubMed]
- Chen, X.B.; Yang, W.; Yang, P.Z.; Yuan, J.B.; Zhao, F.; Hao, J.B.; Tang, Y. Size-controlled Si quantum dots embedded in B-doped SiNx/Si3N4 superlatice for Si quantum dot solar cells. J. Mater. Sci. Mater. Electron. 2017, 28, 1322–1327. [Google Scholar]
- Cho, E.C.; Green, M.A.; Conibeer, G.; Song, D.Y.; Cho, Y.H.; Scardera, G.; Huang, S.J.; Park, S.W.; Hao, X.J.; Huang, Y.D.; et al. Silicon quantum dots in a dielectric matrix for all-silicon tandem solar cells. Adv. OptoElectron. 2007, 15, 69578. [Google Scholar]
- Song, D.Y.; Cho, E.C.; Conibeer, G.; Flynn, C.; Huang, Y.D.; Green, M.A. Structural, electrical and photovoltaic characterization of Si nanocrystals embedded SiC matrix and Si nanocrystals/c-Si heterojunction. Sol. Energy Mater. Sol. Cells 2008, 92, 474–481. [Google Scholar]
- Shao, W.Y.; Lu, P.; Li, W.; Xu, J.; Xu, L.; Chen, K.J. Simulation and experimental study on anti-reflection characteristics of nano-patterned Si structures for Si quantum dot-based light-emitting devices. Nanoscale Res. Lett. 2016, 11, 317. [Google Scholar]
- Tsu, R.; Gonzalez-Hernandez, J.; Chao, S.S.; Lee, S.C.; Tanaka, K. Critical volume fraction of crystallinity for conductivity percolation in phosphorus-doped Si:F:H alloys. Appl. Phys. Lett. 1982, 40, 534–535. [Google Scholar]
- Campbell, I.H.; Fauchet, P.M. The effects of microcrystal size and shape on the one phonon Raman spectra of crystalline semiconductors. Solid State Commun. 1986, 58, 739–741. [Google Scholar]
- Cao, Y.Q.; Xu, X.; Li, S.X.; Li, W.; Xu, J.; Chen, K.J. Improved photovoltaic properties of Si quantum dots/SiC multilayers-based heterojunction solar cells by reducing tunneling barrier thickness. Front. Optoelectron. 2013, 6, 228–233. [Google Scholar]
- Zhang, P.; Zhang, X.W.; Xu, J.; Mu, W.W.; Xu, J.; Li, W.; Chen, K.J. Tunable nonlinear optical properties in nanocrystalline Si/SiO2 multilayers under femtosecond excitation. Nanoscale Res. Lett. 2014, 9, 28. [Google Scholar]
- Wu, W.; Huang, X.F.; Chen, K.J.; Xu, J.B.; Gao, X.; Xu, J.; Li, W. Room temperaturevisible electroluminescence in silicon nanostructures. J. Vac. Sci. Technol. A 1999, 17, 159–163. [Google Scholar] [CrossRef]
- Rui, Y.J.; Li, S.X.; Cao, Y.Q.; Xu, J.; Li, W.; Chen, K.J. Structural and electroluminescent properties of Si quantum dots/SiC multilayers. Appl. Surf. Sci. 2013, 269, 37–40. [Google Scholar] [CrossRef]
- Priolo, F.; Gregorkiewicz, T.; Galli, M.; Krauss, T.F. Silicon nanostructures for photonics and photovoltaics. Nat. Nanotechnol. 2014, 9, 19–32. [Google Scholar] [CrossRef]
- Tauc, J.; Grigorovici, R.; Vancu, A. Optical properties and electronic structure of amorphous germanium. Phys. Status Solidi 1966, 15, 627–637. [Google Scholar] [CrossRef]
- Rui, Y.J.; Li, S.X.; Xu, J.; Song, C.; Jiang, X.F.; Li, W.; Chen, K.J.; Wang, Q.M.; Zuo, Y.H. Size-dependent electroluminescence from Si quantum dots embedded in amorphous SiC matrix. J. Appl. Phys. 2011, 110, 064322. [Google Scholar] [CrossRef]
- Park, S.; Cho, E.C.; Song, D.Y.; Conibeer, G.; Green, M.A. n-Type silicon quantum dots and p-type crystalline silicon heteroface solar cells. Sol. Energy Mater. Sol. Cells 2009, 93, 684–690. [Google Scholar] [CrossRef]
- Boer, K. Survey of Semiconductor Physics; Van Nostrand Reinhold: New York, NY, USA, 1990; p. 244. [Google Scholar]
- Song, C.; Rui, Y.J.; Wang, Q.B.; Xu, J.; Li, W.; Chen, K.J.; Zuo, Y.H.; Wang, Q.M. Structural and electronic properties of Si nanocrystals embedded in amorphous SiC matrix. J. Alloy. Compd. 2011, 509, 3963–3966. [Google Scholar] [CrossRef]
- Li, S.X.; Cao, Y.Q.; Xu, J.; Rui, Y.J.; Li, W.; Chen, K.J. Hydrogenated amorphous silicon-carbide thin films with high photo-sensitivity prepared by layer-by-layer hydrogen annealing technique. Appl. Surf. Sci. 2013, 270, 287–291. [Google Scholar] [CrossRef]
- Cao, Y.Q.; Lu, P.; Zhang, X.W.; Xu, J.; Xu, L.; Chen, K.J. Enhanced photovoltaic property by forming p-i-n structures containing Si quantum dots/SiC multilayers. Nanoscale Res. Lett. 2014, 9, 634. [Google Scholar] [CrossRef] [Green Version]
- Tyagi, M.S.; Van Overstraeten, R. Minority carrier recombination in heavily-doped silicon. Solid-State Electron. 1983, 26, 577–597. [Google Scholar] [CrossRef]
- Zhu, J.; Hsu, C.M.; Yu, Z.F.; Fan, S.H.; Cui, Y. Nanodome solar cells with efficient light management and self-cleaning. Nano Lett. 2010, 10, 1979–1984. [Google Scholar] [CrossRef]
- Xu, J.; Sun, S.H.; Cao, Y.Q.; Lu, P.; Li, W.; Chen, K.J. Light trapping and down-shifting effect of periodically nanopatterned Si-quantum-dot-based structures for enhanced photovoltaic properties. Part. Part. Syst. Charact. 2014, 31, 459–464. [Google Scholar] [CrossRef]
- Lu, P.; Xu, J.; Cao, Y.Q.; Lai, J.W.; Xu, L.; Chen, K.J. Preparation of nano-patterned Si structures for hetero-junction solar cells. Appl. Surf. Sci. 2015, 334, 123–128. [Google Scholar] [CrossRef]
Voc (mV) | Jsc (mA/cm2) | FF (%) | PCE (%) | |
---|---|---|---|---|
Si QDs(2 nm)/SiC(2 nm) MLs | 425 ± 10 | 25.02 ± 0.85 | 43.2 ± 1.3 | 4.59 ± 0.31 |
Si QDs(4 nm)/SiC(2 nm) MLs | 530 ± 9 | 24.66 ± 0.82 | 55.6 ± 1.5 | 7.27 ± 0.45 |
Si QDs(8 nm)/SiC(2 nm) MLs | 532 ± 9 | 21.75 ± 0.75 | 55.8 ± 1.7 | 6.45 ± 0.37 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, Y.; Zhu, P.; Li, D.; Zeng, X.; Shan, D. Size-Dependent and Enhanced Photovoltaic Performance of Solar Cells Based on Si Quantum Dots. Energies 2020, 13, 4845. https://doi.org/10.3390/en13184845
Cao Y, Zhu P, Li D, Zeng X, Shan D. Size-Dependent and Enhanced Photovoltaic Performance of Solar Cells Based on Si Quantum Dots. Energies. 2020; 13(18):4845. https://doi.org/10.3390/en13184845
Chicago/Turabian StyleCao, Yunqing, Ping Zhu, Dongke Li, Xianghua Zeng, and Dan Shan. 2020. "Size-Dependent and Enhanced Photovoltaic Performance of Solar Cells Based on Si Quantum Dots" Energies 13, no. 18: 4845. https://doi.org/10.3390/en13184845
APA StyleCao, Y., Zhu, P., Li, D., Zeng, X., & Shan, D. (2020). Size-Dependent and Enhanced Photovoltaic Performance of Solar Cells Based on Si Quantum Dots. Energies, 13(18), 4845. https://doi.org/10.3390/en13184845