Effect of Operating Conditions and TWC Parameters on Emissions Characteristics of a Stoichiometric Natural Gas Engine
Abstract
:1. Introduction
2. Experiment and Simulation Setup
2.1. Test Platform and Experimental Apparatus
2.2. Numerical Simulation of Three-Way Catalysts
2.2.1. Catalytic Reaction Kinetics Model
2.2.2. Heat and Mass Transfer Model
2.2.3. Control Equations
2.2.4. Model Parameter Settings and Calibration
3. Results and Discussion
3.1. Analysis of Results under Different Operation Conditions
3.1.1. Effect of Air-to-Fuel Ratio
3.1.2. Effect of Engine Speed
3.1.3. Effect of Engine Load
3.2. Analysis of Results of Emissions Using Different Three-Way Catalysts
3.2.1. Effect of Noble Metal Loading
3.2.2. Effect of Noble Metal Ratio
3.2.3. Effect of Pore Density of Carrier
4. Conclusions
- (1)
- AFR can significantly affect the raw emissions of NOx and THC, and better emission conversion efficiency of TWCs can be reached when AFR is controlled between 0.995 to 1. Increasing engine speed leads to higher NOx emissions, exhaust temperature, and flow velocity. Compared with engine speed, engine load has a relatively small effect on exhaust temperature but greatly affects the flow velocity as well as NOx and THC emissions.
- (2)
- Increasing noble metal loading can improve the catalytic performance, especially at high engine speeds. Increasing the content of Pt in the catalyst can improve the THC conversion efficiency. For low Pt and Pd-Rh catalysts, the THC conversion effect is significantly deteriorated. The content of Rh affects the NOx conversion. When Rh content is reduced, the catalytic conversion efficiency of NOx at high speeds is significantly reduced.
- (3)
- Higher pore density of the carrier enhances the catalytic reaction rate and gas temperature in the carrier. Conversion efficiency is also improved at high engine speeds. After aging, TWCs with high carrier pore density can still maintain high catalytic conversion efficiency.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Duan, X.; Li, Y.; Liu, J.; Guo, G.; Fu, J.; Zhang, Q.; Zhang, S.; Liu, W. Experimental study the effects of various compression ratios and spark timing on performance and emission of a lean-burn heavy-duty spark ignition engine fueled with methane gas and hydrogen blends. Energy 2019, 169, 558–571. [Google Scholar] [CrossRef]
- Fagundez, J.; Golke, D.; Martins, M.; Salau, N.P.G. An investigation on performance and combustion characteristics of pure n-butanol and a blend of n-butanol/ethanol as fuels in a spark ignition engine. Energy 2019, 176, 521–530. [Google Scholar] [CrossRef]
- Ibrahim, A.; Bari, S. An experimental investigation on the use of EGR in a supercharged natural gas SI engine. Fuel 2010, 89, 1721–1730. [Google Scholar] [CrossRef]
- Hajbabaei, M.; Karavalakis, G.; Johnson, K.C.; Lee, L.; Durbin, T.D. Impact of natural gas fuel composition on criteria, toxic, and particle emissions from transit buses equipped with lean burn and stoichiometric engines. Energy 2013, 62, 425–434. [Google Scholar] [CrossRef] [Green Version]
- Ou, X.; Zhang, X. Life-Cycle Analyses of Energy Consumption and GHG Emissions of Natural Gas-Based Alternative Vehicle Fuels in China. J. Energy 2013, 2013, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Wang, P.; Wang, S.; Liu, J.; Xie, Y.; Li, W. Quantitative investigation of the effects of CR, EGR and spark timing strategies on performance, combustion and NOx emissions characteristics of a heavy-duty natural gas engine fueled with 99% methane content. Fuel 2019, 255. [Google Scholar] [CrossRef]
- Einewall, P.; Tunestål, P.; Johansson, B. Lean Burn Natural Gas Operation vs. Stoichiometric Operation with EGR and a Three Way Catalyst. SAE Tech. Pap. Ser. 2005. [Google Scholar] [CrossRef] [Green Version]
- Sen, A.; Litak, G.; Yao, B.-F.; Li, G.-X. Analysis of pressure fluctuations in a natural gas engine under lean burn conditions. Appl. Eng. 2010, 30, 776–779. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Zhang, Q.; Li, G. Emission Characteristics of a Natural Gas Engine Operating in Lean-Burn and Stoichiometric Modes. J. Energy Eng. 2016, 142, 04015039. [Google Scholar] [CrossRef]
- Zhang, Q.; Xu, Z.; Li, M.; Shao, S. Combustion and emissions of a Euro VI heavy-duty natural gas engine using EGR and TWC. J. Nat. Gas. Sci. Eng. 2016, 28, 660–671. [Google Scholar] [CrossRef]
- Zheng, J.; Wang, J.; Zhao, Z.; Wang, D.; Huang, Z. Effect of equivalence ratio on combustion and emissions of a dual-fuel natural gas engine ignited with diesel. Appl. Eng. 2019, 146, 738–751. [Google Scholar] [CrossRef]
- Gandhi, H. Automotive exhaust catalysis. J. Catal. 2003, 216, 433–442. [Google Scholar] [CrossRef]
- Salaün, M.; Kouakou, A.; Da Costa, S.; Da Costa, P. Synthetic gas bench study of a natural gas vehicle commercial catalyst in monolithic form: On the effect of gas composition. Appl. Catal. B Environ. 2009, 88, 386–397. [Google Scholar] [CrossRef]
- Xi, Y.; Ottinger, N.; Liu, Z.G. The Dynamics of Methane and NOx Removal by a Three-Way Catalyst: A Transient Response Study. SAE Int. J. Engines 2018, 11, 1331–1341. [Google Scholar] [CrossRef]
- Karavalakis, G.; Hajbabaei, M.; Jiang, Y.; Yang, J.; Johnson, K.C.; Cocker, D.R.; Durbin, T.D. Regulated, greenhouse gas, and particulate emissions from lean-burn and stoichiometric natural gas heavy-duty vehicles on different fuel compositions. Fuel 2016, 175, 146–156. [Google Scholar] [CrossRef] [Green Version]
- Tabata, T.; Baba, K.; Kawashima, H.; Kitade, K. NOx reduction catalyst systems for natural Gas-Fuelled engine cogeneration systems. Stud. Surf. Sci. Catal. 1995, 92, 453. [Google Scholar]
- Kalam, M.; Masjuki, H.H.; Redzuan, M.; Mahlia, T.; Fuad, M.A.; Mohibah, M.; Halim, K.H.; Ishak, A.; Khair, M.; Shahrir, A.; et al. Development and test of a new catalytic converter for natural gas fuelled engine. Sadhana 2009, 34, 467–481. [Google Scholar] [CrossRef]
- Liotta, L.F.; Di Carlo, G.; Pantaleo, G.; Venezia, A.; Deganello, G. Co3O4/CeO2 composite oxides for methane emissions abatement: Relationship between Co3O4–CeO2 interaction and catalytic activity. Appl. Catal. B Environ. 2006, 66, 217–227. [Google Scholar] [CrossRef]
- Li, Z.; Zhu, L.; Li, J.; Wang, H.; Zhang, H.; He, L.; Zhang, Y. Effect of A/F ratio fluctuation on light-off performance of methane of TWC for CNG engine. J. Jilin Univ. 2019, 1, 79–87. [Google Scholar]
- Huo, C.; Zheng, B.; Wang, F.; Wang, Y.; Wang, J. Influence of noble metal ratio on performance of Three-Way catalyst for gas engine. Intern. Combust. Engine Powerpl. 2019, 20–24, 38. [Google Scholar]
- Zhang, Q.; Li, N.; Li, G. Three-Way catalyst for a natural-gas engine. J. Shandong Univ. 2010, 4, 121–124. [Google Scholar]
- Xi, Y.; Ottinger, N.; Liu, Z.G. Development of a Lab Reactor System for the Evaluation of Aftertreatment Catalysts for Stoichiometric Natural Gas Engines. SAE Tech. Pap. Ser. 2017, 1. [Google Scholar] [CrossRef]
- Sakai, T.; Choi, B.-C.; Osuga, R.; Ko, Y.; Kim, E. Unburned Fuel and Formaldehyde Purification Characteristics of Catalytic Converters for Natural Gas Fueled Automotive Engine. SAE Trans. 1992, 101, 721–727. [Google Scholar] [CrossRef]
- Di Maio, D.; Beatrice, C.; Fraioli, V.; Napolitano, P.; Golini, S.; Rutigliano, F.G. Modeling of Three-Way Catalyst Dynamics for a Compressed Natural Gas Engine during Lean–Rich Transitions. Appl. Sci. 2019, 9, 4610. [Google Scholar] [CrossRef] [Green Version]
- Zeng, F.; Finke, J.; Olsen, D.; White, A.; Hohn, K. Modeling of three-way catalytic converter performance with exhaust mixtures from dithering natural gas-fueled engines. Chem. Eng. J. 2018, 352, 389–404. [Google Scholar] [CrossRef]
- Koltsakis, G.; Konstantinidis, P.; Stamatelos, A. Development and application range of mathematical models for 3-way catalytic converters. Appl. Catal. B Environ. 1997, 12, 161–191. [Google Scholar] [CrossRef]
- Hu, E.; Huang, Z.; Liu, B.; Zheng, J.; Gu, X.; Huang, B. Experimental investigation on performance and emissions of a spark-ignition engine fuelled with natural gas–hydrogen blends combined with EGR. Int. J. Hydrogen Energy 2009, 34, 528–539. [Google Scholar] [CrossRef]
- Wang, S.; Li, Y.; Fu, J.; Liu, J.; Dong, H.; Tong, J. Quantitative investigation of the effects of EGR strategies on performance, cycle-to-cycle variations and emissions characteristics of a higher compression ratio and heavy-duty NGSI engine fueled with 99% methane content. Fuel 2020, 263, 116736. [Google Scholar] [CrossRef]
- Lampert, J.; Kazi, M.; Farrauto, R. Palladium catalyst performance for methane emissions abatement from lean burn natural gas vehicles. Appl. Catal. B Environ. 1997, 14, 211–223. [Google Scholar] [CrossRef]
- Du, Y.; Yu, X.; Liu, L.; Li, R.; Zuo, X.; Sun, Y. Effect of addition of hydrogen and exhaust gas recirculation on characteristics of hydrogen gasoline engine. Int. J. Hydrogen Energy 2017, 42, 8288–8298. [Google Scholar] [CrossRef]
- Bounechada, D.; Groppi, G.; Forzatti, P.; Kallinen, K.; Kinnunen, T. Enhanced Methane Conversion Under Periodic Operation Over a Pd/Rh Based TWC in the Exhausts from NGVs. Top. Catal. 2013, 56, 372–377. [Google Scholar] [CrossRef]
- Delmon, B.; Froment, G.F. Catalyst Deactivation; Elsevier Science Press: Amsterdam, The Netherlands, 1998. [Google Scholar]
Parameter | Value |
---|---|
Engine type | In-line six-cylinder |
Displacement (L) | 12.419 |
Bore (mm) | 126 |
Stoke (mm) | 166 |
Compression ratio | 11.46:1 |
Intake mode | Turbocharged, intercooler |
Fuel type | Natural gas |
Mixture formation | Continuous-flow-valve system |
Ignition mode | High energy spark ignition |
Combustion chamber | Flat head, bowl piston |
Maximum torque (N·m)/Speed (r/min) | 2100/1300 |
Rated power (kW)/Speed (r/min) | 330/1800 |
Compositions (vol%) | Property | ||
---|---|---|---|
CH4 | 99.28 | Higher heating value (MJ/kg) | 55.34 |
C2H6 | 0.42 | Lower heating value (MJ/kg) | 49.86 |
C3H8 | 0.10 | Molecular weight (g/mol) | 16.17 |
iC4H10 | 0.02 | Density (kg/m3) | 0.67 |
nC4H10 | 0.02 |
Case | Pore Density (Channels per Square Inch) | Noble Metal Loading (g/ft3) | Noble Metal Ratio (Pt:Pd:Rh) |
---|---|---|---|
TWC1 | 400 | 150 | 45/100/15 |
TWC2 | 400 | 120 | 45/100/15 |
TWC3 | 400 | 100 | 45/100/15 |
TWC4 | 400 | 150 | 30/110/10 |
TWC5 | 400 | 150 | 55/85/10 |
TWC6 | 400 | 150 | 0/140/10 |
TWC7 | 600 | 150 | 45/100/15 |
Parameter | Value | Parameter | Value |
---|---|---|---|
kg/m3 | 0.409 | kg/m3 | 2.5 |
J/(m·s·K) | 0.062 | J/(m·s·K) | 2.0 |
/J/(kg·K) | 1.11 × 103 | J/(kg·K) | 1.0 × 103 |
K | 300 | /m/s | 10.3 |
3.66 | 0.85 | ||
/m2/m3 | 2900 | /mm | 1.17 |
Air–Fuel Ratio | CO Concentration (%) | NO Concentration (ppm) | CH4 Concentration (ppm) | |
---|---|---|---|---|
1 | 1.0128 | 0.0324 | 1863.3 | 342.3 |
2 | 1.0016 | 0.1196 | 1675.8 | 370.0 |
3 | 1.0000 | 0.1507 | 1638.0 | 370.8 |
4 | 0.9932 | 0.2865 | 1431.7 | 374.1 |
5 | 0.9914 | 0.3165 | 1415.9 | 414.6 |
6 | 0.9766 | 0.5991 | 1137.1 | 422.4 |
Chemical Reaction | Pre-Exponential Factor | Activation Energies (kJ/mol) |
---|---|---|
CO + 1/2O2 ⇒CO2 | 1.69 × 1015 | 91,450 |
CH4 + 2O2 ⇒ CO2 + 2H2O | 5.12 × 1015 | 85,600 |
H2 + 1/2O2 ⇒ H2O | 3.79 × 1012 | 21,200 |
CO + NO ⇒ CO2 + 1/2N2 | 1.61 × 1015 | 52,400 |
CH4 + H2O ⇒ CO + 3H2 | 4.90 × 1012 | 128,000 |
Parameters of Carrier | Pore Density of Carrier | |
---|---|---|
400 cpsi | 600 cpsi | |
Pore area (mm2) | 1.36 | 0.92 |
Geometric surface area per unit volume (m2/m3) | 2897 | 3575 |
Porosity (%) | 84.6% | 85.9% |
Pore wall thickness (mm) | 0.102 | 0.076 |
Hydraulic diameter (mm) | 1.17 | 0.96 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lou, D.; Ren, Y.; Li, X.; Zhang, Y.; Sun, X. Effect of Operating Conditions and TWC Parameters on Emissions Characteristics of a Stoichiometric Natural Gas Engine. Energies 2020, 13, 4905. https://doi.org/10.3390/en13184905
Lou D, Ren Y, Li X, Zhang Y, Sun X. Effect of Operating Conditions and TWC Parameters on Emissions Characteristics of a Stoichiometric Natural Gas Engine. Energies. 2020; 13(18):4905. https://doi.org/10.3390/en13184905
Chicago/Turabian StyleLou, Diming, Yedi Ren, Xiang Li, Yunhua Zhang, and Xia Sun. 2020. "Effect of Operating Conditions and TWC Parameters on Emissions Characteristics of a Stoichiometric Natural Gas Engine" Energies 13, no. 18: 4905. https://doi.org/10.3390/en13184905
APA StyleLou, D., Ren, Y., Li, X., Zhang, Y., & Sun, X. (2020). Effect of Operating Conditions and TWC Parameters on Emissions Characteristics of a Stoichiometric Natural Gas Engine. Energies, 13(18), 4905. https://doi.org/10.3390/en13184905