Power Market Formation for Clean Energy Production as the Prerequisite for the Country’s Energy Security
Abstract
:1. Introduction
2. Analysis of the Oxy-Fuel Combustion Technology and Its Environmental Benefits
- fuel (gaseous, including based on coal gasification),
- oxygen,
- carbon dioxide flow limiting the maximum temperature in the combustion chamber.
- Due to the lack of nitrogen among the components of the combustion reactions, the formation of high temperature nitrogen oxides is prevented. This allows to shift the main emphasis in the development of the combustion chamber to achieve high rates of efficiency and combustion stability.
- The two-component composition of the working medium makes it possible to organize the simplest principle of thermodynamic separation of carbon dioxide and water steam in a cooler-separator by condensing the latter. As a result, there are no additional costs associated with respect to the capture of carbon dioxide from the flue gases.
- Carbon dioxide is an inert gas that does not corrode power equipment, both at high and low temperatures.
- In order to avoid high energy costs for the production of oxygen, it must be supplied to the combustion chamber with a small excess coefficient relative to the stoichiometric ratio. The occurrence of the combustion reaction in the combustion chamber with a stoichiometric ratio of fuel to oxidizing agent necessitates the prevention of burning the fuel.
- The need for high purity oxygen production causes higher costs of energy own use.
3. Analysis of the Market Formation for Emissions Quotas of the Harmful Substances
4. Development of Economic Effect Assessing Model for the Application of the Oxygen Combustion Technology, Taking into Account the Environmental Aspect
5. Results and Discussions
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chehabeddine, M.; Tvaronavičienė, M. Securing regional development. Insights Region. Dev. 2020, 2, 430–442. [Google Scholar] [CrossRef]
- El Iysaouy, L.; El Idrissi, N.E.; Tvaronavičienė, M.; Lahbabi, M.; Oumnad, A. Towards energy efficiency: Case of Morocco. Insights Region. Dev. 2019, 1, 259–271. [Google Scholar] [CrossRef] [Green Version]
- Dudin, M.N.; Frolova, E.E.; Protopopova, O.V.; Mamedov, A.A.; Odintsov, S.V. Study of innovative technologies in the energy industry: Nontraditional and renewable energy sources. Entrep. Sustain. Issues 2019, 6, 1704–1713. [Google Scholar] [CrossRef]
- Tvaronavičienė, M.; Ślusarczyk, B. Energy Transformation towards Sustainability; Elsevier: Amsterdam, The Netherlands, 2020; p. 333. [Google Scholar] [CrossRef]
- International Energy Statistics. Total Primary Energy Production. Available online: http://www.eia.gov/cfapps/ipdbproject/IEDIndex3.cfm (accessed on 25 July 2020).
- International Energy Agency. Total Primary Energy Supply. Available online: http://www.iea.org/statistics/ (accessed on 25 July 2020).
- Global Energy Statistical Yearbook. 2019. Available online: https://yearbook.enerdata.net/electricity/electricity-domestic-consumption-data.html (accessed on 25 July 2020).
- Lisin, E.; Shuvalova, D.; Volkova, I.; Strielkowski, W. Sustainable development of regional power systems and the consumption of electric energy. Sustainability 2018, 10, 1111. [Google Scholar] [CrossRef] [Green Version]
- International Energy Agency. Market Report Series: Energy Efficiency. 2018. Available online: https://webstore.iea.org/market-report-series-energy-efficiency-2018 (accessed on 25 July 2020).
- Chen, T.Y.; Yeh, T.L.; Lee, Y.T. Comparison of power plants efficiency among 73 countries. J. Energy 2013, 2013, 916413. [Google Scholar] [CrossRef] [Green Version]
- Lisin, E.; Strielkowski, W.; Krivokora, E. Economic Analysis of Industrial Development: A Case of Russian Coal Industry. Monten. J. Econ. 2016, 12, 129–139. [Google Scholar] [CrossRef]
- Lisin, E.; Rogalev, A.; Strielkowski, W.; Komarov, I. Sustainable modernization of the Russian power utilities industry. Sustainability 2015, 7, 11378–11400. [Google Scholar] [CrossRef] [Green Version]
- Lisin, E.; Sobolev, A.; Strielkowski, W.; Garanin, I. Thermal efficiency of cogeneration units with multi-stage reheating for Russian municipal heating systems. Energies 2016, 9, 269. [Google Scholar] [CrossRef] [Green Version]
- Buhre, B.J.; Elliott, L.K.; Sheng, C.D.; Gupta, R.P.; Wall, T.F. Oxy-fuel combustion technology for coal-fired power generation. Prog. Energy Combust. Sci. 2005, 31, 283–307. [Google Scholar] [CrossRef]
- Toftegaard, M.B.; Brix, J.; Jensen, P.A.; Glarborg, P.; Jensen, A.D. Oxy-fuel combustion of solid fuels. Prog. Energy Combust. Sci. 2010, 36, 581–625. [Google Scholar] [CrossRef]
- Glarborg, P.; Bentzen, L.L. Chemical effects of a high CO2 concentration in oxy-fuel combustion of methane. Energy Fuels 2007, 22, 291–296. [Google Scholar] [CrossRef]
- Li, H.; Yan, J.; Anheden, M. Impurity impacts on the purification process in oxy-fuel combustion based CO2 capture and storage system. Appl. Energy 2009, 86, 202–213. [Google Scholar] [CrossRef]
- Ekström, C.; Schwendig, F.; Biede, O.; Franco, F.; Haupt, G.; de Koeijer, G.; Røkke, P.E. Techno-economic evaluations and benchmarking of pre-combustion CO2 capture and oxy-fuel processes developed in the European ENCAP project. Energy Procedia 2009, 1, 4233–4240. [Google Scholar] [CrossRef] [Green Version]
- Park, S.K.; Kim, T.S.; Sohn, J.L.; Lee, Y.D. An integrated power generation system combining solid oxide fuel cell and oxy-fuel combustion for high performance and CO2 capture. Appl. Energy 2011, 88, 1187–1196. [Google Scholar] [CrossRef]
- Wu, F.; Argyle, M.D.; Dellenback, P.A.; Fan, M. Progress in O2 separation for oxy-fuel combustion–a promising way for cost-effective CO2 capture: A review. Prog. Energy Combust. Sci. 2018, 67, 188–205. [Google Scholar] [CrossRef]
- Ding, G.; He, B.; Cao, Y.; Wang, C.; Su, L.; Duan, Z.; Li, X. Process simulation and optimization of municipal solid waste fired power plant with oxygen/carbon dioxide combustion for near zero carbon dioxide emission. Energy Convers. Manag. 2018, 157, 157–168. [Google Scholar] [CrossRef]
- Strielkowski, W.; Štreimikienė, D.; Bilan, Y. Network charging and residential tariffs: A case of household photovoltaics in the United Kingdom. Renew. Sustain. Energy Rev. 2017, 77, 461–473. [Google Scholar] [CrossRef]
- Rogalev, A.; Grigoriev, E.; Kindra, V.; Rogalev, N. Thermodynamic optimization and equipment development for a high efficient fossil fuel power plant with zero emissions. J. Clean. Prod. 2019, 236, 117592. [Google Scholar] [CrossRef]
- Igaliyeva, L.; Niyazbekova, S.; Serikova, M.; Kenzhegaliyeva, Z.; Mussirov, G.; Zueva, A.; Tyurina, Y.; Maisigova, L. Towards environmental security via energy efficiency: A case study. Entrep. Sustain. Issues 2020, 7, 3488–3499. [Google Scholar] [CrossRef]
- Huang, X.; Guo, J.; Liu, Z.; Zheng, C. Opportunities and Challenges of Oxy-fuel Combustion. In Oxy-Fuel Combustion; Academic Press: New York, NY, USA, 2018; pp. 1–12. [Google Scholar] [CrossRef]
- Balitskiy, S.; Bilan, Y.; Strielkowski, W.; Štreimikienė, D. Energy efficiency and natural gas consumption in the context of economic development in the European Union. Renew. Sustain. Energy Rev. 2016, 55, 156–168. [Google Scholar] [CrossRef]
- Rogalev, A.N.; Kindra, V.O.; Rogalev, N.D.; Sokolov, V.P.; Milukov, I.A. Methods for efficiency improvement of the semi-closed oxy-fuel combustion combined cycle. J. Phys. Conf. Ser. 2018, 1111, 012003. [Google Scholar] [CrossRef]
- Cau, G.; Tola, V.; Ferrara, F.; Porcu, A.; Pettinau, A. CO2-free coal-fired power generation by partial oxy-fuel and post-combustion CO2 capture: Techno-economic analysis. Fuel 2018, 214, 423–435. [Google Scholar] [CrossRef]
- Sarma, U.; Karnitis, G.; Zuters, J.; Karnitis, E. District heating networks: Enhancement of the efficiency. Insights Region. Dev. 2019, 1, 200–213. [Google Scholar] [CrossRef] [Green Version]
- Song, Y.; Zou, C.; He, Y.; Zheng, C. The chemical mechanism of the effect of CO2 on the temperature in methane oxy-fuel combustion. Int. J. Heat Mass Transf. 2015, 86, 622–628. [Google Scholar] [CrossRef]
- Lisin, E.; Strielkowski, W.; Garanin, I. Economic efficiency and transformation of the Russian energy sector. Econ. Res.-Ekon. Istraž. 2015, 28, 620–630. [Google Scholar] [CrossRef]
- Park, H.; Baldick, R. Stochastic generation capacity expansion planning reducing greenhouse gas emissions. IEEE Trans. Power Syst. 2015, 30, 1026–1034. [Google Scholar] [CrossRef]
- McLellan, B.; Florin, N.; Giurco, D.; Kishita, Y.; Itaoka, K.; Tezuka, T. Decentralised energy futures: The changing emissions reduction landscape. Procedia Cirp 2015, 29, 138–143. [Google Scholar] [CrossRef]
- Colmenar-Santos, A.; Gómez-Camazón, D.; Rosales-Asensio, E.; Blanes-Peiró, J.J. Technological improvements in energetic efficiency and sustainability in existing combined-cycle gas turbine (CCGT) power plants. Appl. Energy 2018, 223, 30–51. [Google Scholar] [CrossRef]
- Rogalev, A.; Kindra, V.; Zonov, A.; Rogalev, N.; Agamirov, L. Evaluation of bleed flow precooling influence on the efficiency of the E-MATIANT cycle. Mech. Mech. Eng. 2018, 22, 593–602. [Google Scholar] [CrossRef]
- Zhao, Y.; Chi, J.; Zhang, S.; Xiao, Y. Thermodynamic study of an improved MATIANT cycle with stream split and recompression. Appl. Therm. Eng. 2017, 125, 452–469. [Google Scholar] [CrossRef]
- Rogalev, A.; Kindra, V.; Osipov, S. Modeling methods for oxy-fuel combustion cycles with multicomponent working fluid. AIP Conf. Proc. 2018, 2047, 020020. [Google Scholar]
- Allam, R.; Martin, S.; Forrest, B.; Fetvedt, J.; Lu, X.; Freed, D.; Manning, J. Demonstration of the Allam Cycle: An update on the development status of a high efficiency supercritical carbon dioxide power process employing full carbon capture. Energy Procedia 2017, 114, 5948–5966. [Google Scholar] [CrossRef]
- Nami, H.; Ranjbar, F.; Yari, M.; Saeidi, S. Thermodynamic analysis of a modified oxy-fuel cycle, high steam content Graz cycle with a dual-pressure heat recovery steam generator. Int. J. Exergy 2016, 21, 331–346. [Google Scholar] [CrossRef]
- Ferrari, N.; Mancuso, L.; Davison, J.; Chiesa, P.; Martelli, E.; Romano, M.C. Oxy-turbine for Power Plant with CO2 capture. Energy Procedia 2017, 114, 471–480. [Google Scholar] [CrossRef] [Green Version]
- Siegelman, R.L.; Milner, P.J.; Kim, E.J.; Weston, S.C.; Long, J.R. Challenges and opportunities for adsorption-based CO2 capture from natural gas combined cycle emissions. Energy Environ. Sci. 2019, 12, 2161–2173. [Google Scholar] [CrossRef]
- Garcia, S.I.; Garcia, R.F.; Carril, J.C.; Garcia, D.I. Critical review of the first-law efficiency in different power combined cycle architectures. Energy Convers. Manag. 2017, 148, 844–859. [Google Scholar] [CrossRef]
- Electronic Fund of Legal and Scientific-Technical Documentation of Russia. Maximum Allowable Concentrations of Pollutants GN 2.1.6.1338-03. Available online: http://docs.cntd.ru/document/901865554 (accessed on 25 July 2020).
- Kondrat’eva, O.E.; Roslyakov, P.V. Comparative study of gas-analyzing systems designed for continuous monitoring of TPP emissions. Therm. Eng. 2017, 64, 437–449. [Google Scholar] [CrossRef]
- Fedorov, M.P.; Elistratov, V.V.; Maslikov, V.I.; Sidorenko, G.I.; Chusov, A.N.; Atrashenok, V.P.; Zinchenko, A.V. Reservoir greenhouse gas emissions at Russian TPP. Power Technol. Eng. 2015, 49, 33–39. [Google Scholar] [CrossRef]
- Tumanovskii, A.G. Prospects for the development of coal-steam plants in Russia. Therm. Eng. 2017, 64, 399–407. [Google Scholar] [CrossRef]
- Kondrateva, O.E.; Roslyakov, P.V.; Borovkova, A.M.; Loktionov, O.A. Problems of requirements implementation for the new environmental legislation in energy sector. J. Phys. Conf. Ser. 2018, 1128, 012130. [Google Scholar] [CrossRef] [Green Version]
- Ang, B.W.; Su, B. Carbon emission intensity in electricity production: A global analysis. Energy Policy 2016, 94, 56–63. [Google Scholar] [CrossRef]
- Meng, M.; Wang, L.; Chen, Q. Quota Allocation for Carbon Emissions in China’s Electric Power Industry Based Upon the Fairness Principle. Energies 2018, 11, 2256. [Google Scholar] [CrossRef] [Green Version]
- Mardones, C.; Flores, B. Effectiveness of a CO2 tax on industrial emissions. Energy Econ. 2018, 71, 370–382. [Google Scholar] [CrossRef]
- Kolster, C.; Mechleri, E.; Krevor, S.; Mac Dowell, N. The role of CO2 purification and transport networks in carbon capture and storage cost reduction. Int. J. Greenh. Gas Control 2017, 58, 127–141. [Google Scholar] [CrossRef]
- Rogge, K.S.; Schneider, M.; Hoffmann, V.H. The innovation impact of the EU Emission Trading System—Findings of company case studies in the German power sector. Ecol. Econ. 2011, 70, 513–523. [Google Scholar] [CrossRef]
- Ren, S.; Yuan, B.; Ma, X.; Chen, X. International trade, FDI (foreign direct investment) and embodied CO2 emissions: A case study of Chinas industrial sectors. China Econ. Rev. 2014, 28, 123–134. [Google Scholar] [CrossRef]
- Ellerman, A.D.; Buchner, B.K. The European Union emissions trading scheme: Origins, allocation, and early results. Rev. Environ. Econ. Policy 2007, 1, 66–87. [Google Scholar] [CrossRef]
- Kander, A.; Jiborn, M.; Moran, D.D.; Wiedmann, T.O. National greenhouse-gas accounting for effective climate policy on international trade. Nat. Clim. Chang. 2015, 5, 431. [Google Scholar] [CrossRef]
- Villoria-Sáez, P.; Tam, V.W.; del Río Merino, M.; Arrebola, C.V.; Wang, X. Effectiveness of greenhouse-gas Emission Trading Schemes implementation: A review on legislations. J. Clean. Prod. 2016, 127, 49–58. [Google Scholar] [CrossRef]
- Hickmann, T. Voluntary global business initiatives and the international climate negotiations: A case study of the Greenhouse Gas Protocol. J. Clean. Prod. 2017, 169, 94–104. [Google Scholar] [CrossRef]
- Zhang, H.; Li, Y.; Gao, D.W.; Zhou, J. Distributed optimal energy management for energy internet. IEEE Trans. Ind. Inform. 2017, 13, 3081–3097. [Google Scholar] [CrossRef]
- Li, Y.; Gao, D.W.; Gao, W.; Zhang, H.; Zhou, J. Double-Mode Energy Management for Multi-Energy System via Distributed Dynamic Event-Triggered Newton-Raphson Algorithm. IEEE Trans. Smart Grid 2020. [Google Scholar] [CrossRef]
- ICE Futures Europe. Available online: https://www.theice.com/products/Futures-Options/Energy/Emissions (accessed on 25 July 2020).
- Shavochkin, I.A.; Grekhov, L.L.; Dubov, E.A. Development of a process control system for the gas-turbine units operating at the thermal power plant of the Tuapse oil refinery plant. Therm. Eng. 2013, 60, 722–729. [Google Scholar] [CrossRef]
- Kudinov, A.A.; Ziganshina, S.K.; Khusainov, K.R.; Demina, Y.E. Development of technologies to increase efficiency and reliability of combined cycle power plant with double-pressure heat recovery steam generator. Mater. Sci. Eng. 2020, 791, 012014. [Google Scholar] [CrossRef]
- Davison, J. Performance and costs of power plants with capture and storage of CO2. Energy 2007, 32, 1163–1176. [Google Scholar] [CrossRef]
Oxy-Fuel Combustion Cycles | Fuel | Oxidizer | Net Efficiency, % | Specific Amount of Produced CO2, g/kWh | CO2 Capture Rate, % | Specific Amount of Captured CO2, g/kWh | Specific Amount of CO2 Emitted to the Atmosphere, g/kWh |
---|---|---|---|---|---|---|---|
oxy-fuel combustion cycle | |||||||
SCOC-CC | CH4 | O2 | 47.7 | 406 | 98.9 | 402 | 4 |
MATIANT | CH4 | O2 | 43 | 451 | 98.9 | 446 | 5 |
E-MATIANT | CH4 | O2 | 44 | 440 | 98.9 | 436 | 5 |
CC-MATIANT | CH4 | O2 | 46 | 421 | 98.9 | 417 | 5 |
Allam cycle | CH4 | O2 | 56.5 | 343 | 98.9 | 339 | 4 |
S-Graz cycle | CH4 | O2 | 54 | 359 | 98.9 | 355 | 4 |
CES cycle | CH4 | O2 | 48 | 404 | 98.9 | 399 | 4 |
AZEP | CH4 | O2 | 50 | 388 | 98.9 | 383 | 4 |
ZEITMOP | CH4 | O2 | 51 | 380 | 98.9 | 376 | 4 |
combined steam-gas cycle | |||||||
Combined cycle gas turbine with CCS | CH4 | Air | 48 | 404 | 89 | 359 | 44 |
Combined cycle gas turbine without CCS | CH4 | Air | 60 | 323 | 0 | 0 | 323 |
No. | Substance | Hazard Class | One-Time MPC, mg/m3 | Daily Average MPC, mg/m3 |
---|---|---|---|---|
1 | Carbonic oxide | 4 | 5 | 3 |
2 | Nitrogen dioxide | 2 | 0.2 | 0.04 |
3 | Nitrogen oxide | 3 | 0.4 | 0.06 |
4 | Sulfur dioxide | 3 | 0.5 | 0.05 |
5 | Ammonia | 4 | 0.2 | 0.04 |
6 | Hydrogen sulfide | 2 | 0.008 | - |
Model Parameter | GTU TPP Without CO2 Capture | CCGTU TPP Without CO2 Capture and Storage | CCGTU TPP with CO2 Capture and Storage | TPP with Oxygen-Fuel Cycle |
---|---|---|---|---|
Installed capacity, MW | 100 | 300 | 300 | 300 |
Net efficiency for the generation of electric energy, % | 40 | 58 | 48 | 50 |
Specific CO2 emissions, g/kWh | 485 | 323 | 44 | 4 |
Specific capital investment, $/kW | 1200 | 1700 | 2200 | 1900 |
Period of operation, years | 30 | 30 | 30 | 30 |
Installed capacity utilization factor | 0.7 | 0.7 | 0.7 | 0.7 |
Calorific value, kJ/m3 | 36,000 | 36,000 | 36,000 | 36,000 |
The number of staff, persons | 120 | 250 | 250 | 250 |
Average salary level in the industry, rubles | 47,000 | 47,000 | 47,000 | 47,000 |
The coefficient of social contributions, % | 30.2 | 30.2 | 30.2 | 30.2 |
The coefficient of contributions to the repair fund, % | 5 | 5 | 5 | 5 |
The ratio of other costs, % | 25 | 25 | 25 | 25 |
Electricity Production Technology | Fuel Price Range Providing a Minimum of Unit Cost of Electricity Production, Rub/t | |
---|---|---|
Without Emission Quota | With Emission Quotas | |
GTU TPP | 0–1910 | - |
CCGTU TPP | >1910 | 0–3461 |
CCGTU TPP with CO2 capture | - | - |
TPP with the oxygen-fuel cycle | - | >3461 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tvaronavičienė, M.; Lisin, E.; Kindra, V. Power Market Formation for Clean Energy Production as the Prerequisite for the Country’s Energy Security. Energies 2020, 13, 4930. https://doi.org/10.3390/en13184930
Tvaronavičienė M, Lisin E, Kindra V. Power Market Formation for Clean Energy Production as the Prerequisite for the Country’s Energy Security. Energies. 2020; 13(18):4930. https://doi.org/10.3390/en13184930
Chicago/Turabian StyleTvaronavičienė, Manuela, Evgeny Lisin, and Vladimir Kindra. 2020. "Power Market Formation for Clean Energy Production as the Prerequisite for the Country’s Energy Security" Energies 13, no. 18: 4930. https://doi.org/10.3390/en13184930
APA StyleTvaronavičienė, M., Lisin, E., & Kindra, V. (2020). Power Market Formation for Clean Energy Production as the Prerequisite for the Country’s Energy Security. Energies, 13(18), 4930. https://doi.org/10.3390/en13184930