Methodology for an Opto-Geometric Optimization of a Linear Fresnel Reflector for Direct Steam Generation
Abstract
:1. Introduction
- fixed receiver.
- low wind load in the mirrors.
- largest collection area for each receiver (which reduces the cost of receivers and simplifies the management of fluid circulation).
- small moving parts (the mirrors are much smaller than the only one mirror of a PTC).
- lower costs of the optical components (the mirrors are almost flat, and their construction is simpler).
- the receiver is always illuminated from below, but the addition of a CPC allows a more uniform heat flux distribution over the absorber tube, regardless of the angle of the Sun, minimizing thermal stresses.
- an easier system maintenance facility.
- reduced optical efficiency, especially when the Sun is far from the focal plane.
- greater sensitivity to optical and tracking errors, due to the greater distances between the mirrors and the receiver.
2. Methodology
2.1. Solar Angles in A LFR
2.2. Opto-Geometric Description of the LFR Field
- : Effective area of the primary mirrors, : Area of the LFR module.
- : Receiver area
- : Total lighting area
- : Left receiver spillage
- : Right receiver spillage
- : Receiver width
2.3. Optimization of the Solar Field for the City of Agua Prieta, Sonora
3. Results
- : Aperture length of the CPC, : Perimeter of the tube absorber.
4. Comparison of the Optimized Field with FRESDEMO and A PTC
4.1. Flux Distribution
4.2. Thermal Process
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Nomenclature
Symbols | |
area [m2] | |
receiver width [m] | |
geometric concentration | |
longitudinal location of the i-th mirror [m] | |
gap between the absorber and the CPC cusp [m] | |
height from the receiver to the primary mirrors [m] | |
angle modifier | |
length of primary mirrors [m] | |
filling factor | |
number of mirrors | |
radius [m] | |
t | angle parameter [rad] |
width [m] | |
abscissa [m] | |
ordinate [m] | |
Greek Symbols | |
solar altitude angle | |
angle of rotation of the CPC curves | |
slope | |
intercept factor | |
azimuth angle | |
declination | |
optical efficiency | |
angle of incidence | |
half acceptance angle | |
half angular acceptance window | |
zenith angle | |
ray from the pole | |
inclination angle of the primary mirrors | |
hour angle | |
Subscripts | |
generic counter | |
illuminated | |
longitudinal / spillage left | |
primary mirrors/mirrors | |
spillage right | |
solar field | |
/ | transversal |
Acronyms | |
CPC | Compound Parabolic Collector |
DSG | Direct Steam Generation |
HTF | Heat Transfer Fluid |
IAM | Incident Angle Modifier |
LFR | Linear Fresnel Reflector |
PTC | Parabolic Trough Collector |
References
- Norton, B. Harnessing Solar Heat, 1st ed.; Springer: New York, NY, USA, 2014; Volume 18, ISBN 978-94-007-7274-8. [Google Scholar]
- Breeze, P. Solar Power Generation, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2014; ISBN 9780128040041. [Google Scholar]
- Blanco, M.J.; Miller, S. 1—Introduction to concentrating solar thermal (CST) technologies. In Advances in Concentrating Solar Thermal Research and Technology; Woodhead Publishing: Amsterdam, The Netherlands, 2017; pp. 3–25. ISBN 9780081005163. [Google Scholar]
- Zhu, G.; Wendelin, T.; Wagner, M.J.; Kutscher, C. History, current state, and future of linear Fresnel concentrating solar collectors. Sol. Energy 2014, 103, 639–652. [Google Scholar] [CrossRef]
- Mills, D.R. 6—Linear Fresnel reflector (LFR) technology. In Concentrating Solar Power Technology; Elsevier: Amsterdam, The Netherlands, 2012; pp. 153–196. ISBN 9781845697693. [Google Scholar]
- Abbas, R.; Martínez-Val, J.M. Analytic optical design of linear Fresnel collectors with variable widths and shifts of mirrors. Renew. Energy 2015, 75, 81–92. [Google Scholar] [CrossRef] [Green Version]
- Boito, P.; Grena, R. Optimization of the geometry of Fresnel linear collectors. Sol. Energy 2016, 135, 479–486. [Google Scholar] [CrossRef]
- Boito, P.; Grena, R. Optimal focal length of primary mirrors in Fresnel linear collectors. Sol. Energy 2017, 155, 1313–1318. [Google Scholar] [CrossRef]
- Qiu, Y.; Li, M.-J.; Wang, K.; Liu, Z.-B.; Xue, X.-D. Aiming strategy optimization for uniform flux distribution in the receiver of a linear Fresnel solar reflector using a multi-objective genetic algorithm. Appl. Energy 2017, 205, 1394–1407. [Google Scholar] [CrossRef] [Green Version]
- Cui, W.; Li, H.; Li, L.; Liao, Q. Thermal stress analysis of DSG solar absorber tube in stratified two-phase regime. AIP Conf. Proc. 2013, 1558, 2217–2220. [Google Scholar]
- Zarza Moya, E. 5—Innovative working fluids for parabolic trough collectors. In Advances in Concentrating Solar Thermal Research and Technology; Blanco, M., Ramirez Santiagosa, L., Eds.; Woodhead Publishing: Amsterdam, The Netherlands, 2017; pp. 75–106. ISBN 9780081005163. [Google Scholar]
- Montes, M.J.; Barbero, R.; Abbas, R.; Rovira, A. Performance model and thermal comparison of different alternatives for the Fresnel single-tube receiver. Appl. Therm. Eng. 2016, 104, 162–175. [Google Scholar] [CrossRef]
- Montes Pita, M.J. Análisis Y Propuestas De Sistemas Solares De Alta Exergía Que Emplean Agua Como Fluido Calorífero; Universidad Politécnica de Madrid: Madrid, Spain, 2008. [Google Scholar]
- Duffie, J.A.; Beckman, W.A. Solar Engineering of Thermal Processes, 4th ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2013; ISBN 1118418123. [Google Scholar]
- Wu, C. Thermodynamics and Heat Powered Cycles. A Cognitive Engineering Approach, 1st ed.; Nova Science Publishers, Inc.: Hauppauge, NY, USA, 2007; ISBN 9781606926260. [Google Scholar]
- Goswami, Y.D. Principles of Solar Engineering, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2015; ISBN 1466563796. [Google Scholar]
- Johnson, D.C. Red Rock Energy. Available online: http://www.redrok.com (accessed on 22 March 2017).
- Hakkarainen, E.; Kannari, L. Dynamic Modelling of Concentrated Solar Field for Thermal Energy Storage Integration. In Proceedings of the 9th International Renewable Energy Storage Conference (IRES 2015), Düsseldorf, Germany, 9–11 March 2015. [Google Scholar]
- Abbas, R.; Montes, M.J.; Piera, M.; Martínez-Val, J.M. Solar radiation concentration features in Linear Fresnel Reflector arrays. Energy Convers. Manag. 2012, 54, 133–144. [Google Scholar] [CrossRef]
- Sun, J.; Liu, Q.; Hong, H. Numerical study of parabolic-trough direct steam generation loop in recirculation mode: Characteristics, performance and general operation strategy. Energy Convers. Manag. 2015, 96, 287–302. [Google Scholar] [CrossRef]
- Häberle, A. Linear Fresnel Collectors. In Encyclopedia of Sustainability Science and Technology; Meyers, R.A., Ed.; Springer: New York, NY, USA, 2012; pp. 6031–6037. ISBN 978-1-4419-0851-3. [Google Scholar]
- Nixon, J.D.; Davies, P.A. Cost-exergy optimisation of linear Fresnel reflectors. Sol. Energy 2012, 86, 147–156. [Google Scholar] [CrossRef] [Green Version]
- Abbas, R.; Muñoz-Antón, J.; Valdés, M.; Martínez-Val, J.M. High concentration linear Fresnel reflectors. Energy Convers. Manag. 2013, 72, 60–68. [Google Scholar] [CrossRef]
- Bernhard, R.; Laabs, H.-J.; de LaLaing, J.; Eickhoff, M. Linear Fresnel Collector Demonstration on the PSA, Part I—Design, Construction and Quality Control. In Proceedings of the 14th International SolarPACES Symposium, Las Vegas, NV, USA, 4–7 March 2014; pp. 1–10. [Google Scholar]
- Klychev, S.I.; Abdurakhmanov, A.A.; Kuchkarov, A.A. Optical-geometric parameters of a linear Fresnel mirror with flat facets. Appl. Sol. Energy 2014, 50, 168–170. [Google Scholar] [CrossRef]
- Singh, P.L.; Ganesan, S.; Yàdav, G.C. Technical note: Performance study of a linear Fresnel concentrating solar device. Renew. Energy 1999, 18, 409–416. [Google Scholar] [CrossRef]
- Montes, M.J.; Rubbia, C.; Abbas, R.; Martínez-Val, J.M. A comparative analysis of configurations of linear fresnel collectors for concentrating solar power. Energy 2014, 73, 192–203. [Google Scholar] [CrossRef] [Green Version]
- Barale, G.; Heimsath, A.; Nitz, P.; Toro, A. Optical design of a linear fresnel collector for sicily. In Proceedings of the 16th SolarPACES International Symposium Perpignan, Perpignan, France, 21–24 September 2010. [Google Scholar]
- Winston, R.; Miñano, J.; Benítez, P. Nonimaging Optics, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2005; ISBN 0127597514. [Google Scholar]
- Chaves, J. Introduction to Nonimaging Optics, 2nd ed.; CRC Press: New York, NY, USA, 2017; ISBN 9781138747906. [Google Scholar]
- Zhu, G. Development of an analytical optical method for linear Fresnel collectors. Sol. Energy 2013, 94, 240–252. [Google Scholar] [CrossRef]
- Pettit, R.B.; Vittitoe, C.N.; Biggs, F. Simplified Calculational Procedure for Determining the Amount of Intercepted Sunlight in an Imaging Solar Concentrator. J. Sol. Energy Eng. 1983, 105, 101–107. [Google Scholar] [CrossRef]
- Yang, F.; Itskhokine, D.; Benmarraze, S.; Benmarraze, M.; Hofer, A.; Lecat, F.; Ferrière, A. Acceptance Testing Procedure for Linear Fresnel Reflector Solar Systems in Utility-Scale Solar Thermal Power Plants. Energy Procedia 2015, 69, 1479–1487. [Google Scholar] [CrossRef]
- Karathanasis, S. Linear Fresnel Reflector Systems for Solar Radiation Concentration: Theoretical Analysis, Mathematical Formulation and Parameters’ Computation Using MATLAB; Springer Nature: Berlin/Heidelberg, Germany, 2019; ISBN 9783030052799. [Google Scholar]
- Morin, G.; Platzer, W.; Eck, M.; Uhlig, R.; Haberle, A.; Berger, M. Road map towards the demonstration of a linear Fresnel collector using single tube receiver. In Proceedings of the International Symposium on Concentrated Solar Power and Chemical Energy Technologies, Seville, Spain, 20–23 June 2006. [Google Scholar]
- Morin, G.; Platzer, W.; Strelow, M.; Leithner, R. Techno-economic system simulation and optimization of solar thermal power plants. In Proceedings of the 14th International SolarPACES Symposium on Solar Thermal Concentrating Technologies, Las Vegas, NV, USA, 4–7 March 2008. [Google Scholar]
- Platzer, W.; Heimsath, A.; Hülsey, H. Parameter identification technique for the determination of optical efficiency of concentrating collectors. In Proceedings of the 15th International SolarPACES Symposium on Solar Thermal Concentrating Technologies, Berlin, Germany, 15–18 September 2009. [Google Scholar]
- Abbas, R. Towards Cost Reduction in Concentrating Solar Power: Innovative Design for an Efficient Fresnel Based Solar Field; Universidad Politécnica de Madrid: Madrid, Spain, 2015. [Google Scholar]
- González-Mora, E.; Rincón-Mejía, E.A. Conceptos Básicos De La Concentración Solar. Notas De Clase; FI-UAEM: Toluca, México, 2018; p. 130. [Google Scholar]
- Rabl, A. Active Solar Collectors and Their Applications; Oxford University Press: Oxford, UK, 1985; ISBN 9780195365214. [Google Scholar]
- Rabl, A.; Goodman, N.B.; Winston, R. Practical design considerations for CPC solar collectors. Sol. Energy 1979, 22, 373–381. [Google Scholar] [CrossRef]
- Carvalho, M.J.; Collares-Pereira, M.; Gordon, J.M.; Rabl, A. Truncation of CPC solar collectors and its effect on energy collection. Sol. Energy 1985, 35, 393–399. [Google Scholar] [CrossRef]
- Rincón Mejía, E.A.; Durán García, M.D.; Lentz Herrera, Á. New Solar Air Heater Based on Non-Imaging Optics for High-Temperature Applications. In Proceedings of the ASME 2009 3rd International Conference on Energy Sustainability, San Francisco, CA, USA, 19–23 July 2009; Volume 2, pp. 839–844. [Google Scholar]
- Wendelin, T. SolTRACE: A New Optical Modeling Tool for Concentrating Solar Optics. In Proceedings of the International Solar Energy Conference, Kohala Coast, HI, USA, 15–18 March 2003. [Google Scholar]
Characteristic | Value |
---|---|
Number of primary mirrors () | |
Total width of the solar field () | |
Total length of primary mirrors () | |
Width of the primary mirrors () | |
Height of the receiver to the primary mirrors () | |
Receiver width ( | |
Orientation of the mirror axis | N-S |
i-th Mirror | Longitudinal Location | Inclination on the Horizontal |
---|---|---|
0 | ||
1 | ||
2 | ||
3 | ||
4 | ||
5 | ||
6 | ||
7 | ||
8 | ||
9 | ||
10 |
Parameter | Value |
---|---|
Latitude | |
Day | |
Declination | |
Solar hour angle | |
Zenith angle | |
Solar azimuthal angle | |
Incidence angle | |
Solar azimuthal angle |
Parameter | FRESDEMO Original | FRESDEMO in Agua Prieta | FRESDEMO Optimized | Optimization for Agua Prieta |
---|---|---|---|---|
Number of primary mirrors | ||||
Solar field width | ||||
Total length of the primary mirrors | ||||
Width of the primary mirrors | ||||
Filling factor | ||||
Receiver height | ||||
Receiver width | ||||
Outer diameter of the absorber tube | ||||
Inner diameter of the absorber tube | ||||
Semi-angle acceptance of the CPC | ||||
Intercept factor | ||||
Receiver length | ||||
Geometric concentration of the CPC | ||||
Geometric concentration of the entire field | ||||
Longitudinal incidence angle modifier | - | - | - | See Equation (13) |
Transverse angle of incidence modifier | - | - | - | See Equation (14) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
González-Mora, E.; Durán García, M.D. Methodology for an Opto-Geometric Optimization of a Linear Fresnel Reflector for Direct Steam Generation. Energies 2020, 13, 355. https://doi.org/10.3390/en13020355
González-Mora E, Durán García MD. Methodology for an Opto-Geometric Optimization of a Linear Fresnel Reflector for Direct Steam Generation. Energies. 2020; 13(2):355. https://doi.org/10.3390/en13020355
Chicago/Turabian StyleGonzález-Mora, Eduardo, and Ma. Dolores Durán García. 2020. "Methodology for an Opto-Geometric Optimization of a Linear Fresnel Reflector for Direct Steam Generation" Energies 13, no. 2: 355. https://doi.org/10.3390/en13020355
APA StyleGonzález-Mora, E., & Durán García, M. D. (2020). Methodology for an Opto-Geometric Optimization of a Linear Fresnel Reflector for Direct Steam Generation. Energies, 13(2), 355. https://doi.org/10.3390/en13020355