Solar Energy Data Analytics: PV Deployment and Land Use
Abstract
:1. Introduction
2. Materials and Methods
3. Status Quo, Trends, and Policy Scenarios for Land Consumption and RES
- Scenario #1 accounts for a progressive reduction in the speed of transformation, equal to −15% every three years, so as to reach an increase in net land occupation equal to zero by 2050. This means that from today to 2050, there would be an additional soil consumption of 818 km2.
- Scenario #2 accounts for the historical trend recorded over the past five years and extends it linearly to 2050. It entails that the future additional soil consumption will be 1672 km2.
4. Results and Discussion
4.1. Analysis of Correlations
4.2. Future Scenarios
- The target at 2030 is already reached, with non-RES electricity consumption lower than the regression line.
- The remaining land to be consumed should be almost entirely dedicated for the 73.6% of additional RES power plant installations.
- For those provinces where the required space is less than 10% of the consumed soil, it is likely that the targets can be reached by 2030 without resorting to new surfaces.
- For those provinces where the additional required land exceeds 30% of the consumed soil, the achievement of the target by 2030 will certainly be difficult, with only the use of photovoltaic systems.
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Open Data Description | Unit |
---|---|
Consumed/Not consumed/Not classified soil | km2 |
Consumed/Not consumed/Not classified soil in % of the administrative unit area | % |
Increase of consumed soil in hectares | km2 |
Density of consumed soil over total area | m2/km2 |
Consumed/Not consumed/Not classified soil in protected areas in hectares | km2 |
Consumed/Not consumed/Not classified soil in 150 m river buffer zones | km2, % |
Consumed/Not consumed soil in 300/300–1000/1000–10,000 m from shoreline | km2, % |
Consumed/Not consumed soil in 0–300/300–600/over 600 m a.s.l. (Above See Level) | km2, % |
Consumed/Not consumed soil in 0–10%/over 10% slope | km2, % |
Consumed/Not consumed soil in flood hazard zones | km2, % |
Consumed/Not consumed soil in landslide hazard zones | km2, % |
Consumed/Not consumed soil in high/very high seismic hazard zones | km2, % |
Surface in/not in a 60/100/200 n buffer of consumed soil area | km2, % |
Surface of Permanent Water Bodies | km2 |
Classification of municipalities centrality | |
Classification of municipalities elevation | |
Total administrative area | km2 |
Population | |
Population density | inh./km2 |
Ratio of low-density urban area on urban area | % |
Landscape metrics classification of urban areas | |
Built-up (20 m)/(5 m) area in rural/urban areas | km2, % |
Urban area | km2, % |
Rural area | % |
Low density/Compact urban area | % |
Appendix B
Open Data Description | Unit | Resolution | |
---|---|---|---|
Demand | Electricity supplied | TWh | National/Regional |
Structure of electricity supplied (Bioenergy, Wind, Photovoltaic, Geothermal, Hydropower, Pumping, Thermal) | TWh | National/Regional | |
Distribution of demand coverage | TWh | National/Regional | |
Consumption | Electricity consumption by sector | TWh | National/Regional |
Electricity consumption in the industrial sector | TWh | National/Regional | |
Electricity consumption by market type (Self-consumption, Free market, Captive market) | TWh | National/Regional | |
Consumption of electricity by type of activity | TWh | National/Regional/Provincial | |
Production | Gross Electricity production by source (Net/Gross) | TWh | National/Regional |
Gross Production from thermoelectric sections (Net/Gross) | TWh | National/Regional | |
Renewable sources electricity production (Net/Gross) | TWh | National/Regional/Provincial | |
Capacity | Gross efficient power by source | MW | National/Regional |
Gross efficient power of thermoelectric sections | MW | National/Regional | |
Gross efficient power of renewable energy plants (Bioenergy, Wind, Photovoltaic, Geothermal, Hydro) | % | National/Regional |
References
- European Commission. A Clean Planet for all A European strategic long-term vision for a prosperous, modern, competitive and climate neutral economy. COM 2018, 773, 1–25. [Google Scholar]
- Zappa, W.; Junginger, M.; van den Broek, M. Is a 100% renewable European power system feasible by 2050? Appl. Energy 2019, 233–234, 1027–1050. [Google Scholar] [CrossRef]
- McDonagh, S.; Wall, D.M.; Deane, P.; Murphy, J.D. The effect of electricity markets, and renewable electricity penetration, on the levelised cost of energy of an advanced electro-fuel system incorporating carbon capture and utilisation. Renew. Energy 2019, 131, 364–371. [Google Scholar] [CrossRef]
- Simoes, S.G.; Dias, L.; Gouveia, J.P.; Seixas, J.; De Miglio, R.; Chiodi, A.; Gargiulo, M.; Long, G.; Giannakidis, G. INSMART—Insights on integrated modelling of EU cities energy system transition. Energy Strategy Rev. 2018, 20, 150–155. [Google Scholar] [CrossRef]
- Nastasi, B. Hydrogen Policy, Market and R&D Projects. In Hydrogen Production from Solar Energy; Calise, F., D’Accadia, M.D., Santarelli, M., Lanzini, A., Ferrero, D., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; ISBN 9780128148532. [Google Scholar]
- Fischer, D.; Harbrecht, A.; Surmann, A.; McKenna, R. Electric vehicles’ impacts on residential electric local profiles—A stochastic modelling approach considering socio-economic, behavioural and spatial factors. Appl. Energy 2019, 233–234, 644–658. [Google Scholar] [CrossRef]
- Mancini, F.; Lo Basso, G.; De Santoli, L. Energy Use in Residential Buildings: Characterisation for Identifying Flexible Loads by Means of a Questionnaire Survey. Energies 2019, 12, 2055. [Google Scholar] [CrossRef] [Green Version]
- Kyritsis, E.; Andersson, J.; Serletis, A. Electricity prices, large-scale renewable integration, and policy implications. Energy Policy 2017, 101, 550–560. [Google Scholar] [CrossRef] [Green Version]
- Paraschiv, F.; Erni, D.; Pietsch, R. The impact of renewable energies on EEX day-ahead electricity prices. Energy Policy 2014, 73, 196–210. [Google Scholar] [CrossRef] [Green Version]
- The European Parliament and the Council of the European Union. Directive 2001/77/EC of The European Parliament And of the Council of 27 September 2001 on the promotion of electricity produced from renewable energy sources in the internal electricity market. Off. J. Eur. Communities L 2001, 283, 33–40. [Google Scholar]
- Manfren, M. Multi-Scale Computing for a Sustainable Built Environment. In Smart Cities; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2017; pp. 53–97. [Google Scholar]
- Nastasi, B. Power to Gas and Hydrogen applications to energy systems at different scales—Building, District and National level. Int. J. Hydrogen Energy 2019, 44, 9485. [Google Scholar] [CrossRef]
- Adhikari, R.S.; Aste, N.; Manfren, M. Multi-commodity network flow models for dynamic energy management—Smart Grid applications. Energy Procedia 2012, 14, 1374–1379. [Google Scholar] [CrossRef] [Green Version]
- Hossain, M.S.; Madlool, N.A.; Rahim, N.A.; Selvaraj, J.; Pandey, A.K.; Khan, A.F. Role of smart grid in renewable energy: An overview. Renew. Sustain. Energy Rev. 2016, 60, 1168–1184. [Google Scholar] [CrossRef]
- Mancini, F.; Nastasi, B. Energy Retrofitting Effects on the Energy Flexibility of Dwellings. Energies 2019, 12, 2788. [Google Scholar] [CrossRef] [Green Version]
- Ministero dello Sviluppo Economico; Ministero dell’Ambiente e della Tutela del Territorio e del Mare; Ministero delle Infrastrutture e dei Trasporti. Proposta di Piano Nazionale Integrato Per L’energia E Il Clima. Available online: https://www.mise.gov.it/images/stories/documenti/Proposta_di_Piano_Nazionale_Integrato_per_Energia_e_il_Clima_Italiano.pdf (accessed on 11 September 2019).
- Piras, G.; Pini, F.; Astiaso Garcia, D. Correlations of PM10 concentrations in urban areas with vehicle fleet development, rain precipitation and diesel fuel sales. Atmos. Pollut. Res. 2019, 10, 1165–1179. [Google Scholar] [CrossRef]
- Castillo, C.P.; e Silva, F.B.; Lavalle, C. An assessment of the regional potential for solar power generation in EU-28. Energy Policy 2016, 88, 86–99. [Google Scholar] [CrossRef]
- Aste, N.; Del Pero, C.; Leonforte, F.; Manfren, M. A simplified model for the estimation of energy production of PV systems. Energy 2013, 59, 503–512. [Google Scholar] [CrossRef]
- Mazzoni, S.; Ooi, S.; Nastasi, B.; Romagnoli, A. Energy storage technologies as techno-economic parameters for master-planning and optimal dispatch in smart multi energy systems. Appl. Energy 2019, 254, 113682. [Google Scholar] [CrossRef]
- Kabir, E.; Kumar, P.; Kumar, S.; Adelodun, A.A.; Kim, K.-H. Solar energy: Potential and future prospects. Renew. Sustain. Energy Rev. 2018, 82, 894–900. [Google Scholar] [CrossRef]
- Biyik, E.; Araz, M.; Hepbasli, A.; Shahrestani, M.; Yao, R.; Shao, L.; Essah, E.; Oliveira, A.C.; del Caño, T.; Rico, E.; et al. A key review of building integrated photovoltaic (BIPV) systems. Eng. Sci. Technol. Int. J. 2017, 20, 833–858. [Google Scholar] [CrossRef]
- Sahu, B.K. A study on global solar PV energy developments and policies with special focus on the top ten solar PV power producing countries. Renew. Sustain. Energy Rev. 2015, 43, 621–634. [Google Scholar] [CrossRef]
- Overholm, H. Spreading the rooftop revolution: What policies enable solar-as-a-service? Energy Policy 2015, 84, 69–79. [Google Scholar] [CrossRef]
- Tronchin, L.; Manfren, M.; James, P.A. Linking design and operation performance analysis through model calibration: Parametric assessment on a Passive House building. Energy 2018, 165, 26–40. [Google Scholar] [CrossRef] [Green Version]
- Garcia, D.A.; Cumo, F.; Tiberi, M.; Sforzini, V.; Piras, G. Cost-benefit analysis for energy management in public buildings: Four Italian case studies. Energies 2016, 9, 522. [Google Scholar] [CrossRef]
- Mancini, F.; Lo Basso, G.; de Santoli, L. Energy Use in Residential Buildings: Impact of Building Automation Control Systems on Energy Performance and Flexibility. Energies 2019, 12, 2896. [Google Scholar] [CrossRef] [Green Version]
- Pueyo, A. What constrains renewable energy investment in Sub-Saharan Africa? A comparison of Kenya and Ghana. World Dev. 2018, 109, 85–100. [Google Scholar] [CrossRef]
- Neves, A.R.; Leal, V.; Lourenço, J.C. A methodology for sustainable and inclusive local energy planning. Sustain. Cities Soc. 2015, 17, 110–121. [Google Scholar] [CrossRef]
- Garcia, D.A.; Cumo, F.; Pennacchia, E.; Pennucci, V.S.; Piras, G.; De Notti, V.; Roversi, R. Assessment of a urban sustainability and life quality index for elderly. Int. J. Sustain. Dev. Plan. 2017, 12, 908–921. [Google Scholar] [CrossRef]
- Poudineh, R.; Jamasb, T. Distributed generation, storage, demand response and energy efficiency as alternatives to grid capacity enhancement. Energy Policy 2014, 67, 222–231. [Google Scholar] [CrossRef] [Green Version]
- de Santoli, L.; Mancini, F.; Garcia, D.A. A GIS-based model to assess electric energy consumptions and usable renewable energy potential in Lazio region at municipality scale. Sustain. Cities Soc. 2019, 46, 101413. [Google Scholar] [CrossRef] [Green Version]
- Manfren, M. Multi-commodity network flow models for dynamic energy management—Mathematical formulation. Energy Procedia 2012, 14, 1380–1385. [Google Scholar] [CrossRef] [Green Version]
- Adhikari, R.S.; Aste, N.; Manfren, M.; Marini, D. Energy Savings through Variable Speed Compressor Heat Pump Systems. Energy Procedia 2012, 14, 1337–1342. [Google Scholar] [CrossRef] [Green Version]
- Frontini, F.; Manfren, M.; Tagliabue, L.C. A Case Study of Solar Technologies Adoption: Criteria for BIPV Integration in Sensitive Built Environment. Energy Procedia 2012, 30, 1006–1015. [Google Scholar] [CrossRef] [Green Version]
- Groppi, D.; Garcia, D.A.; Lo Basso, G.; De Santoli, L. Synergy between smart energy systems simulation tools for greening small Mediterranean islands. Renew. Energy 2019, 135, 515–524. [Google Scholar] [CrossRef]
- Martín-Chivelet, N. Photovoltaic potential and land-use estimation methodology. Energy 2016, 94, 233–242. [Google Scholar] [CrossRef]
- Arabatzis, G.; Kyriakopoulos, G.; Tsialis, P. Typology of regional units based on RES plants: The case of Greece. Renew. Sustain. Energy Rev. 2017, 78, 1424–1434. [Google Scholar] [CrossRef]
- Alsayegh, O.; Saker, N.; Alqattan, A. Integrating sustainable energy strategy with the second development plan of Kuwait. Renew. Sustain. Energy Rev. 2018, 82, 3430–3440. [Google Scholar] [CrossRef]
- Nezhad, M.M.; Groppi, D.; Marzialetti, P.; Fusilli, L.; Laneve, G.; Cumo, F.; Garcia, D.A. Wind energy potential analysis using Sentinel-1 satellite: A review and a case study on Mediterranean islands. Renew. Sustain. Energy Rev. 2019, 109, 499–513. [Google Scholar] [CrossRef]
- Istituto superiore per la protezione e la ricerca ambientale (ISPRA); Marchetti, M.; Marino, D.; de Toni, A.; Giaccio, V.; Giannelli, A.; Mastronardi, L.; Nofroni, L.; Rivieccio, R.; Vizzarri, M. Consumo di suolo, dinamiche territoriali e servizi ecosistemici. In Edizione 2018; ISPRA: Rome, Italy, 2018. [Google Scholar]
- Delfanti, L.; Colantoni, A.; Recanatesi, F.; Bencardino, M.; Sateriano, A.; Zambon, I.; Salvati, L. Solar plants, environmental degradation and local socioeconomic contexts: A case study in a Mediterranean country. Environ. Impact Assess. Rev. 2016, 61, 88–93. [Google Scholar] [CrossRef]
- European Parliament and the Council of the European Union. Directive 2007/2/EC of the European Parliament and of the Council of 14 March 2007 establishing an Infrastructure for Spatial Information in the European Community (INSPIRE). Off. J. Eur. Union L 2007, 108, 50. [Google Scholar]
- Geoviewer Ispra. Available online: http://www.geoviewer.isprambiente.it/index.html?config=config_en.xml (accessed on 2 January 2020).
- Consumo_suolo_2019_Com_Prov_Reg_It_1_1|Uso, Copertura e Consumo di Suolo. Available online: http://groupware.sinanet.isprambiente.it/uso-copertura-e-consumo-di-suolo/library/consumo-di-suolo/indicatori/consumo_suolo_2019_com_prov_reg_it_1_1 (accessed on 2 January 2020).
- Terna S.p.A. The Evolution of the Electricity Market: All Data. Available online: https://www.terna.it/en/electric-system/statistical-data-forecast/evolution-electricity-market (accessed on 10 September 2019).
- Gestore dei Servizi Energetici. Monitoraggio Fer. Available online: https://www.gse.it/dati-e-scenari/monitoraggio-fer# (accessed on 22 August 2019).
- GSE—Gestore dei Servizi Energetici S.p.A. Available online: https://atla.gse.it/atlaimpianti/project/Atlaimpianti_Internet.html (accessed on 10 September 2019).
- Fritsche, U.; Berndes, B.; Cowie, A.; Dale, V.; Kline, K. Energy and Land Use. In Working Paper for the Global Land Outlook; UN Convention to Combat Desertification: Bonn, Germany, 2017. [Google Scholar]
- Fthenakis, V.; Kim, H.C. Land use and electricity generation: A life-cycle analysis. Renew. Sustain. Energy Rev. 2009, 13, 1465–1474. [Google Scholar] [CrossRef] [Green Version]
- Cheng, V.K.M.; Hammond, G.P. Life-cycle energy densities and land-take requirements of various power generators: A UK perspective. J. Energy Inst. 2017, 90, 201–213. [Google Scholar] [CrossRef]
- van Zalk, J.; Behrens, P. The spatial extent of renewable and non-renewable power generation: A review and meta-analysis of power densities and their application in the U.S. Energy Policy 2018, 123, 83–91. [Google Scholar] [CrossRef]
- Konadu, D.D.; Mourão, Z.S.; Allwood, J.M.; Richards, K.S.; Kopec, G.; McMahon, R.; Fenner, R. Land use implications of future energy system trajectories—The case of the UK 2050 Carbon Plan. Energy Policy 2015, 86, 328–337. [Google Scholar] [CrossRef] [Green Version]
- Waite, J.L. Land reuse in support of renewable energy development. Land Use Policy 2017, 66, 105–110. [Google Scholar] [CrossRef]
- Riahi, K.; van Vuuren, D.P.; Kriegler, E.; Edmonds, J.; O’Neill, B.C.; Fujimori, S.; Bauer, N.; Calvin, K.; Dellink, R.; Fricko, O.; et al. The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview. Glob. Environ. Chang. 2017, 42, 153–168. [Google Scholar] [CrossRef] [Green Version]
- van Vuuren, D.P.; Stehfest, E.; Gernaat, D.E.H.J.; Doelman, J.C.; van den Berg, M.; Harmsen, M.; de Boer, H.S.; Bouwman, L.F.; Daioglou, V.; Edelenbosch, O.Y.; et al. Energy, land-use and greenhouse gas emissions trajectories under a green growth paradigm. Glob. Environ. Chang. 2017, 42, 237–250. [Google Scholar] [CrossRef] [Green Version]
- Pao, H.-T.; Yu, H.-C.; Yang, Y.-H. Modeling the CO2 emissions, energy use, and economic growth in Russia. Energy 2011, 36, 5094–5100. [Google Scholar] [CrossRef]
- Zhao, X.; Du, D. Forecasting carbon dioxide emissions. J. Environ. Manag. 2015, 160, 39–44. [Google Scholar] [CrossRef]
- Chiabrando, R.; Fabrizio, E.; Garnero, G. The territorial and landscape impacts of photovoltaic systems: Definition of impacts and assessment of the glare risk. Renew. Sustain. Energy Rev. 2009, 13, 2441–2451. [Google Scholar] [CrossRef]
- Mauro, G.; Lughi, V. Mapping land use impact of photovoltaic farms via crowdsourcing in the Province of Lecce (Southeastern Italy). Sol. Energy 2017, 155, 434–444. [Google Scholar] [CrossRef] [Green Version]
- European Commission; European Environment Agency. No Net Land Take by 2050? Science for Environment Policy Future Brief 14. Available online: https://www.eea.europa.eu/data-and-maps/indicators/land-recycling-and-densification/no-net-land-take-by (accessed on 10 September 2019).
# | Description | Parameter | Regression Type | R2 Values |
---|---|---|---|---|
#1a | Soil consumption versus Electricity consumption | inhabitant | linear | 0.0474 |
#1b | quadratic | 0.056 | ||
#1c | unit area | linear | 0.8310 | |
#1d | quadratic | 0.8572 | ||
#2a | Soil consumption versus Electricity production from RES | inhabitant | linear | 0.1267 |
#2b | quadratic | 0.1269 | ||
#2c | unit area | linear | 0.0128 | |
#2d | quadratic | 0.0224 | ||
#3a | Electricity consumption versus Electricity production from RES | inhabitant | linear | 0.0134 |
#3b | quadratic | 0.0174 | ||
#3c | unit area | linear | 0.0259 | |
#3d | quadratic | 0.0279 | ||
#4a | Soil consumption versus Electricity production from PV | inhabitant | linear | 0.0013 |
#4b | quadratic | 0.0193 | ||
#4c | unit area | linear | 0.0054 | |
#4d | quadratic | 0.002 | ||
#5a | Soil consumption versus non-RES electricity consumption | inhabitant | linear | 0.0472 |
#5b | quadratic | 0.0484 | ||
#5c | unit area | linear | 0.8237 | |
#5d | quadratic | 0.8464 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mancini, F.; Nastasi, B. Solar Energy Data Analytics: PV Deployment and Land Use. Energies 2020, 13, 417. https://doi.org/10.3390/en13020417
Mancini F, Nastasi B. Solar Energy Data Analytics: PV Deployment and Land Use. Energies. 2020; 13(2):417. https://doi.org/10.3390/en13020417
Chicago/Turabian StyleMancini, Francesco, and Benedetto Nastasi. 2020. "Solar Energy Data Analytics: PV Deployment and Land Use" Energies 13, no. 2: 417. https://doi.org/10.3390/en13020417
APA StyleMancini, F., & Nastasi, B. (2020). Solar Energy Data Analytics: PV Deployment and Land Use. Energies, 13(2), 417. https://doi.org/10.3390/en13020417