Dynamic Modeling of a Parallel-Connected Solid Oxide Fuel Cell Stack System
Abstract
:1. Introduction
2. Architecture of the Parallel-Connected FC Stacks
3. Mathematics Models of the Parallel-Connected SOFC Stacks
3.1. Fluid Dynamics Modeling
3.2. Electrochemical Reaction Modeling
4. Proposed Algorithms for Modeling the Parallel-Connected Stacks
Parameter Design for Integral Operations
5. Simulation Results
5.1. Model Validation
5.2. Dynamic Response of the Parallel-Connected SOFC Stacks
5.2.1. Same Stacks in the Parallel Connection
5.2.2. Different Stacks in the Parallel Connection
5.2.3. Stacks Have Less Heat Capacity
6. Discussion
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Nomenclature
mass, | |
pressure, | |
temperature, | |
ideal gas constant, | |
Faraday constant, | |
, | mole fractions |
volume, | |
mass, | |
number of cells | |
flow constant, | |
heat, | |
activation polarization, | |
ohmic polarization, | |
concentration polarization, | |
ideal cell voltage, | |
current density, . | |
Gibbs free energy | |
voltage of the FC stack, | |
current of the FC stack, | |
electricity power of the FC stack, | |
constant pressure specific heat, | |
constant volume specific heat, | |
Boltzman constant, | |
emissivity of air | |
area, | |
reaction heat of the electrochemical reactions, | |
exchange current density, | |
limiting current densities, | |
,, | thicknesses of the electrodes, |
,, | ohmic-loss coefficients of the electrodes, |
,, | ohmic-loss coefficients of the electrodes, |
, | activation polarization coefficients, |
, | activation polarization coefficients, |
, | effective diffusivities, |
Superscript | |
inlet | |
outlet | |
reaction | |
upstream | |
downstream | |
Subscript | |
fuel cell stack | |
anode | |
cathode | |
interconnector | |
steel | |
radiation |
References
- Felseghi, R.A.; Carcadea, E.; Raboaca, M.S.; Trufin, C.N.; Filote, C. Hydrogen Fuel Cell Technology for the Sustainable Future of Stationary Applications. Energies 2019, 12, 4593. [Google Scholar] [CrossRef] [Green Version]
- Chang, H.; Lee, I.H. Environmental and efficiency analysis of simulated application of the solid oxide fuel cell co-generation system in a dormitory building. Energies 2019, 12, 3893. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Nehrir, M.H.; Gao, H. Control of PEM fuel cell distributed generation systems. IEEE Trans. Energy Convers. 2006, 21, 586–595. [Google Scholar] [CrossRef]
- Perry, M.; Weingaertner, D.; Basu, N.; Petrucha, M.; Lyle, W.D.; Krishnan, N.; Gottmann, M. SOFC Hot Box Components. U.S. Patent Application 2018/0191007, 5 July 2018. [Google Scholar]
- Michalske, S.C.; Spare, B.L. Parallel Fuel Cell Stack Architecture. U.S. Patent Application 2011/0256463, 20 October 2011. [Google Scholar]
- Fowler, M.; Amphlett, J.C.; Mann, R.F.; Peppley, B.A.; Roberge, P.R. Issues associated with voltage degradation in a PEMFC. J. New Mater. Electrochem. Syst. 2002, 5, 255–262. [Google Scholar]
- Sohal, M.S. Degradation in Solid Oxide Cells During High Temperature Electrolysis, Idaho National Laboratory, Idaho Falls, Idaho. 2009; INL/EXT-09- 15617. [Google Scholar]
- O’hayre, R.; Cha, S.W.; Colella, W.; Prinz, F.B. Fuel Cell Fundamentals, 3rd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2016. [Google Scholar]
- Park, K.; Yu, S.; Bae, J.; Kim, H.; Ko, Y. Fast performance degradation of SOFC caused by cathode delamination in long-term testing. Int. J. Hydrogen Energy 2010, 35, 8670–8677. [Google Scholar] [CrossRef]
- Jin, L.; Guan, W.; Ma, X.; Zhai, H.; Wang, W.G. Quantitative contribution of resistance sources of components to stack performance for planar solid oxide fuel cells. J. Power Sources 2014, 253, 305–314. [Google Scholar] [CrossRef]
- Virkar, A.V. A model for solid oxide fuel cell (SOFC) stack degradation. J. Power Sources 2007, 172, 713–724. [Google Scholar] [CrossRef]
- Chatillon, Y.; Bonnet, C.; Lapicque, F. Heterogeneous aging within PEMFC stacks. Fuel Cells 2014, 14, 581–589. [Google Scholar] [CrossRef]
- Galushkin, N.E.; Yazvinskaya, N.N.; Galushkin, D.N. Mechanism of thermal runaway in lithium-ion cells. J. Electrochem. Soc. 2018, 165, 1303–1308. [Google Scholar] [CrossRef]
- Keller, C.; Tadros, Y. Are paralleled IGBT modules or paralleled IGBT inverters the better choice? In Proceedings of the 1993 Fifth European Conference on Power Electronics and Applications, Brighton, UK, 13–16 September 1993; pp. 1–6. [Google Scholar]
- Lee, T.S.; Chung, J.N.; Chen, Y.C. Design and optimization of a combined fuel reforming and solid oxide fuel cell system with anode off-gas recycling. Energy Convers. Manag. 2011, 52, 3214–3226. [Google Scholar] [CrossRef]
- Saebea, D.; Patcharavorachot, Y.; Arpornwichanop, A. Analysis of an ethanol-fuelled solid oxide fuel cell system using partial anode exhaust gas recirculation. J. Power Sources 2012, 208, 120–130. [Google Scholar] [CrossRef]
- Pianko-Oprych, P.; Hosseini, S.M. Dynamic analysis of load operations of two-stage SOFC stacks power generation system. Energies 2017, 10, 2103. [Google Scholar] [CrossRef] [Green Version]
- Han, S.; Sun, L.; Shen, J.; Pan, L.; Lee, K. Optimal Load-Tracking Operation of Grid-Connected Solid Oxide Fuel Cells through Set Point Scheduling and Combined L1-MPC Control. Energies 2018, 11, 801. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.H.; Chang, S.C.; Chan, Y.H.; Chang, W.S. A dynamic analysis of the multi-stack SOFC-CHP system for power modulation. Energies 2019, 12, 3686. [Google Scholar]
- Wu, C.C.; Chen, T.L. Design and dynamics simulations of small scale solid oxide fuel cell tri-generation system. Energy Convers. Manag. X 2019, 1, 100001. [Google Scholar] [CrossRef]
- Fardadi, M.; Mueller, F.; Jabbari, F. Feedback control of solid oxide fuel cell spatial temperature variation. J. Power Sources 2010, 195, 4222–4233. [Google Scholar] [CrossRef]
- Menon, V.; Banerjee, A.; Dailly, J.; Deutschmann, O. Numerical analysis of mass and heat transport in proton-conducting SOFCs with direct internal reforming. Appl. Energy 2015, 149, 161–175. [Google Scholar] [CrossRef]
- Huangfu, Y.; Gao, F.; Abbas Turki, A.; Bouquain, D.; Miraoui, A. Transient dynamic and modeling parameter sensitivity analysis of 1D solid oxide fuel cell model. Energy Convers. Manag. 2013, 71, 172–185. [Google Scholar] [CrossRef]
- Gao, F.; Simoes, M.G.; Blunier, B.; Miraoui, A. Development of a quasi 2-D modeling of tubular solid-oxide fuel cell for real-time control. IEEE Trans. Energy Convers. 2013, 29, 9–19. [Google Scholar] [CrossRef]
- Marx, N.; Boulon, L.; Gustin, F.; Hissel, D.; Agbossou, K. A review of multi-stack and modular fuel cell systems: Interests, application areas and on-going research activities. Int. J. Hydrogen Energy 2014, 39, 12101–12111. [Google Scholar] [CrossRef]
- Kolli, A.; Gaillard, A.; De Bernardinis, A.; Bethoux, O.; Hissel, D.; Khatir, Z. A review on DC/DC converter architectures for power fuel cell applications. Energy Convers. Manag. 2015, 105, 716–730. [Google Scholar] [CrossRef]
- Pukrushpan, J.T. Modeling and Control of Fuel Cell Systems and Fuel Processors. Ph.D. Dissertation, Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA, 2003. [Google Scholar]
- Murshed, A.M.; Huang, B.; Nandakumar, K. Control relevant modeling of planer solid oxide fuel cell system. J. Power Sources 2007, 163, 830–845. [Google Scholar] [CrossRef]
- Lisbona, P.; Corradetti, A.; Bove, R.; Lunghi, P. Analysis of a solid oxide fuel cell system for combined heat and power applications under non-nominal conditions. Electrochim. Acta 2007, 53, 1920–1930. [Google Scholar] [CrossRef]
- Zhang, L.; Xing, Y.; Xu, H.; Wang, H.; Zhong, J.; Xuan, J. Comparative study of solid oxide fuel cell combined heat and power system with Multi-Stage Exhaust Chemical Energy Recycling: Modeling, experiment and optimization. Energy Convers. Manag. 2017, 139, 79–88. [Google Scholar] [CrossRef]
- Zhao, F.; Virkar, A.V. Dependence of polarization in anode-supported solid oxide fuel cells on various cell parameters. J. Power Sources 2005, 141, 79–95. [Google Scholar] [CrossRef]
Symbol | Value | Symbol | Value |
---|---|---|---|
Symbol | Value | Symbol | Value |
---|---|---|---|
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, C.-C.; Chen, T.-L. Dynamic Modeling of a Parallel-Connected Solid Oxide Fuel Cell Stack System. Energies 2020, 13, 501. https://doi.org/10.3390/en13020501
Wu C-C, Chen T-L. Dynamic Modeling of a Parallel-Connected Solid Oxide Fuel Cell Stack System. Energies. 2020; 13(2):501. https://doi.org/10.3390/en13020501
Chicago/Turabian StyleWu, Chien-Chang, and Tsung-Lin Chen. 2020. "Dynamic Modeling of a Parallel-Connected Solid Oxide Fuel Cell Stack System" Energies 13, no. 2: 501. https://doi.org/10.3390/en13020501
APA StyleWu, C. -C., & Chen, T. -L. (2020). Dynamic Modeling of a Parallel-Connected Solid Oxide Fuel Cell Stack System. Energies, 13(2), 501. https://doi.org/10.3390/en13020501