An All-At-Once Newton Strategy for Marine Methane Hydrate Reservoir Models
Abstract
:1. Introduction
2. Mathematical Model
2.1. Governing Equations
2.1.1. Mass, Momentum, and Energy Conservation
2.1.2. Closure Relationships
2.2. Constitutive Relations
2.2.1. Vapor–Liquid Equilibrium
2.2.2. Diffusive Mass Flux
2.2.3. Hydrate Phase Change Kinetics
2.2.4. Hydraulic Properties
2.3. Primary Variables
3. Numerical Solution Strategy
3.1. Space and Time Discretization of the Conservation Laws
3.2. Nonlinear Complementary Constraints
3.3. Semi-Smooth Newton Scheme
3.4. Numerical Implementation
4. Numerical Examples
4.1. Example 1: Gas Migration through Gas Hydrate Stability Zone (GHSZ)
4.1.1. Problem Setting
4.1.2. Numerical Simulation and Results
4.2. Example 2: Gas Production through Depressurization
4.2.1. Problem Setting
4.2.2. Numerical Simulation and Results
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Suess, E. Marine cold seeps. In Handbook of Hydrocarbon and Lipid Microbiology; Timmis, K.N., Ed.; Springer-Verlag: Berlin/Heidelberg, Germany, 2010; Volume 1, pp. 187–203. [Google Scholar] [CrossRef]
- Liu, J.; Haeckel, M.; Rutqvist, J.; Wang, S.; Yan, W. The Mechanism of Methane Gas Migration through the Gas Hydrate Stability Zone: Insights From Numerical Simulations. J. Geophys. Res. Solid Earth 2019, 124, 4399–4427. [Google Scholar] [CrossRef] [Green Version]
- Piñero, E.; Marquardt, M.; Hensen, C.; Haeckel, M.; Wallmann, K. Estimation of the global inventory of methane hydrates in marine sediments using transfer functions. Biogeosciences 2013, 10, 959–975. [Google Scholar] [CrossRef] [Green Version]
- Burwicz, E.; Rüpke, L.; Wallmann, K. Estimation of the global amount of submarine gas hydrates formed via microbial methane formation based on numerical reaction-transport modeling and a novel parameterization of Holocene sedimentation. Geochim. Cosmochim. Acta 2011, 75, 4562–4576. [Google Scholar] [CrossRef] [Green Version]
- Archer, D.; Buffett, B.; Brovkin, V. Ocean methane hydrates as a slow tipping point in the global carbon cycle. Proc. Natl. Acad. Sci. USA 2009, 106, 20596–20601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, F.; Zhao, B.; Li, G. Prevention of Potential Hazards Associated with Marine Gas Hydrate Exploitation: A Review. Energies 2018, 11, 2384. [Google Scholar] [CrossRef] [Green Version]
- Ruppel, C.D.; Kessler, J.D. The interaction of climate change and methane hydrates. Rev. Geophys. 2017, 55, 126–168. [Google Scholar] [CrossRef]
- Class, H.; Helmig, R.; Niessner, J.; Ölmann, U. Multiphase processes in porous media. Lect. Notes Appl. Comput. Mech. 2006, 2006, 45–82. [Google Scholar] [CrossRef]
- Marchand, E.; Müller, T.; Knabner, P. Fully coupled generalized hybrid-mixed finite element approximation of two-phase two-component flow in porous media. Part I: Formulation and properties of the mathematical model. Comput. Geosci. 2013, 17, 431–442. [Google Scholar] [CrossRef]
- Wu, Y.S.; Forsyth, P.A. On the selection of primary variables in numerical formulation for modeling multiphase flow in porous media. J. Contam. Hydrol. 2001, 48, 277–304. [Google Scholar] [CrossRef]
- Class, H.; Helmig, R.; Bastian, P. Numerical simulation of non-isothermal multiphase multicomponent processes in porous media. 1. An efficient solution technique. Adv. Water Resour. 2002, 25, 533–550. [Google Scholar] [CrossRef]
- Panfilov, M.; Panfilova, I. Method of negative saturations for flow with variable number of phases in porous media: Extension to three-phase multi-component case. Comput. Geosci. 2014, 18, 385–399. [Google Scholar] [CrossRef]
- Neumann, R.; Bastian, P.; Ippisch, O. Modeling and simulation of two-phase two-component flow with disappearing nonwetting phase. Comput. Geosci. 2013, 17, 139–149. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Kolditz, O.; Shao, H. Extending the persistent primary variable algorithm to simulate non-isothermal two-phase two-component flow with phase change phenomena. Geotherm. Energy 2015, 3. [Google Scholar] [CrossRef] [Green Version]
- Lauser, A.; Hager, C.; Helmig, R.; Wohlmuth, B. A new approach for phase transitions in miscible multi-phase flow in porous media. Adv. Water Resour. 2011, 34, 957–966. [Google Scholar] [CrossRef]
- Kräutle, S. The semismooth Newton method for multicomponent reactive transport with minerals. Adv. Water Resour. 2011, 34, 137–151. [Google Scholar] [CrossRef]
- Ben-Gharbia, I.; Jaffré, J. Gas phase appearance and disappearance as a problem with complementarity constraints. Math. Comput. Simul. 2014, 99, 28–36. [Google Scholar] [CrossRef] [Green Version]
- Bui, Q.M.; Elman, H.C. Semi-smooth Newton methods for nonlinear complementarity formulation of compositional two-phase flow in porous media. arXiv 2018, arXiv:1805.05801. [Google Scholar] [CrossRef] [Green Version]
- Moridis, G.; Kowalsky, M.B.; Pruess, K. TOUGH + Hydrate v1.0 User’s Manual: A Code for the Simulation of System Behavior in Hydrate-Bearing Geologic Media; LBNL: Berkeley, CA, USA, 2008. [Google Scholar] [CrossRef] [Green Version]
- Janicki, G.; Schlüter, S.; Hennig, T.; Lyko, H.; Deerberg, G. Simulation of Methane Recovery from Gas Hydrates Combined with Storing Carbon Dioxide as Hydrates. J. Geol. Res. 2011, 2011. [Google Scholar] [CrossRef] [Green Version]
- Janicki, G.; Schlöter, S.; Hennig, T.; Deerberg, G. Simulation of subsea gas hydrate exploitation. Energy Procedia 2014, 59, 82–89. [Google Scholar] [CrossRef]
- White, M.D.; Appriou, D.; Bacon, D.H.; Fang, Y.; Freedman, V.; Rockhold, M.L.; Ruprecht, C.; Tartakovsky, G.; White, S.K.; Zhang, F. STOMP Online User Guide; Pacific Northwest National Laboratory: Richland, WA, USA, 2015. [Google Scholar]
- Moridis, G.J.; Kowalsky, M.B.; Pruess, K. HYDrateResSim User’S Manual: A Numerical Simulator for Modeling the Behaviour of Hydrates in Geologic Media; Earth Sciences Division, Lawrence Berkeley National Laboratory: Berkeley, CA, USA, 2005. [Google Scholar]
- Liu, X.; Flemings, P.B. Dynamic multiphase flow model of hydrate formation in marine sediments. J. Geophys. Res. Solid Earth 2007, 112. [Google Scholar] [CrossRef] [Green Version]
- Gupta, S.; Helmig, R.; Wohlmuth, B. Non-isothermal, multi-phase, multi-component flows through deformable methane hydrate reservoirs. Comput. Geosci. 2015, 19, 1063–1088. [Google Scholar] [CrossRef] [Green Version]
- Fuente, M.D.L.; Vaunat, J.; Marín-Moreno, H. Thermo-Hydro-Mechanical Coupled Modeling of Methane Hydrate-Bearing Sediments: Formulation and Application. Energies 2019, 12, 2178. [Google Scholar] [CrossRef] [Green Version]
- Sánchez, M.; Santamarina, C.; Teymouri, M.; Gai, X. Coupled Numerical Modeling of Gas Hydrate-Bearing Sediments: From Laboratory to Field-Scale Analyses. J. Geophys. Res. Solid Earth 2018, 123, 10326–10348. [Google Scholar] [CrossRef] [Green Version]
- Helmig, R. Multiphase Flow and Transport Processes in the Subsurface. A Contribution to the Modeling of Hydrosystems; Springer: Berlin/Heidelberg, Germany, 1997; p. 367. [Google Scholar]
- Facchinei, F.; Pang, J.S. Finite-Dimensional Variational Inequalities and Complementarity Problems, Volume II; Springer: New York, NY, USA, 2013; Volume 53, pp. 1689–1699. [Google Scholar] [CrossRef]
- Trémolières, R.; Lions, J.; Glowinski, R. Numerical Analysis of Variational Inequalities; Studies in Mathematics and its Applications; Elsevier Science: Amsterdam, The Netherlands, 2011. [Google Scholar]
- Hager, C.; Wohlmuth, B. Semismooth Newton methods for variational problems with inequality constraints. GAMM Mitt. 2010, 33, 8–24. [Google Scholar] [CrossRef]
- Hintermüller, M.; Ito, K.; Kunisch, K. The Primal-Dual Active Set Strategy As a Semismooth Newton Method. SIAM J. Optim. 2002, 13, 865–888. [Google Scholar] [CrossRef] [Green Version]
- Hüeber, S.; Wohlmuth, B. A primal-dual active set strategy for non-linear multibody contact problems. Comput. Methods Appl. Mech. Eng. 2005, 194, 3147–3166. [Google Scholar] [CrossRef]
- Hassanizadeh, M.; Gray, W.G. General conservation equations for multi-phase systems: 1. Averaging procedure. Adv. Water Resour. 1979, 2, 131–144. [Google Scholar] [CrossRef]
- Hassanizadeh, M.; Gray, W.G. General conservation equations for multi-phase systems: 2. Mass, momenta, energy, and entropy equations. Adv. Water Resour. 1979, 2, 191–203. [Google Scholar] [CrossRef]
- Hassanizadeh, M.; Gray, W.G. General conservation equations for multi-phase systems: 3. Constitutive theory for porous media flow. Adv. Water Resour. 1980, 3, 25–40. [Google Scholar] [CrossRef]
- Kuhn, H.W.; Tucker, A.W. Nonlinear Programming. In Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, Berkeley, CA, USA, 31 July–12 August 1950; University of California Press: Berkeley, CA, USA, 1951; pp. 481–492. [Google Scholar]
- Kim, H.C.; Bishnoi, P.R.; Heidemann, R.A.; Rizvi, S.S.H. Kinetics of methane hydrate decomposition. Chem. Eng. Sci. 1987, 42, 1645–1653. [Google Scholar] [CrossRef]
- Kamath, V. Study of Heat Transfer Characteristics During Dissociation of Gas Hydrates in Porous Media. Ph.D. Thesis, University of Pittsburgh, Pittsburgh, PA, USA, 1984. [Google Scholar]
- Brooks, R.H.; Corey, A.T. Hydraulic Properties of Porous Media; Colorado State University Hydrology Papers, Colorado State University: Fort Collins, CO, USA, 1964. [Google Scholar]
- Gupta, S. Non-Isothermal, Multi-Phase, Multi-Component Flows through Deformable Methane Hydrate Reservoirs. Ph.D. Thesis, Technical University of Munich: Munich, Germany, 2016. [Google Scholar]
- Kossel, E.; Deusner, C.; Bigalke, N.; Haeckel, M. The Dependence of Water Permeability in Quartz Sand on Gas Hydrate Saturation in the Pore Space. J. Geophys. Res. Solid Earth 2018, 123, 1235–1251. [Google Scholar] [CrossRef] [Green Version]
- Chen, B.; Chen, X.; Kanzow, C. A penalized Fischer-Burmeister NCP-function. Math. Program. 2000, 88, 211–216. [Google Scholar] [CrossRef]
- Fischer, A. On the local superlinear convergence of a Newton-type method for LCP under weak conditions. Optim. Methods Softw. 1995, 6, 83–107. [Google Scholar] [CrossRef]
- Fischer, A. A Newton-type method for positive-semidefinite linear complementarity problems. J. Optim. Theory Appl. 1995, 86, 585–608. [Google Scholar] [CrossRef]
- Fischer, A. A special newton-type optimization method. Optimization 1992, 24, 269–284. [Google Scholar] [CrossRef]
- Bastian, P.; Heimann, F.; Marnach, S. Generic implementation of finite element methods in the Distributed and Unified Numerics Environment (DUNE). Kybernetika 2010, 46, 294–315. [Google Scholar]
- Demmel, J.W.; Eisenstat, S.C.; Gilbert, J.R.; Li, X.S.; Liu, J.W.H. A supernodal approach to sparse partial pivoting. SIAM J. Matrix Anal. Appl. 1999, 20, 720–755. [Google Scholar] [CrossRef]
- Winguth, C.; Wong, H.; Panin, N.; Dinu, C.; Georgescu, P.; Ungureanu, G.; Krugliakov, V.; Podshuveit, V. Upper Quaternary water level history and sedimentation in the northwestern Black Sea. Mar. Geol. 2000, 167, 127–146. [Google Scholar] [CrossRef]
- Zander, T.; Haeckel, M.; Berndt, C.; Chi, W.C.; Klaucke, I.; Bialas, J.; Klaeschen, D.; Koch, S.; Atgın, O. On the origin of multiple BSRs in the Danube deep-sea fan, Black Sea. Earth Planet. Sci. Lett. 2017, 462, 15–25. [Google Scholar] [CrossRef] [Green Version]
- Degens, E.T.; Ross, D.A. The Black Sea: Geology, chemistry, biology. AAPG Mem. 1974. [Google Scholar] [CrossRef]
- Peng, D.Y.; Robinson, D.B. A New Two-Constant Equation of State. Ind. Eng. Chem. Fundam. 1976, 15, 59–64. [Google Scholar] [CrossRef]
- Kossel, E.; Bigalke, N.; Pinero, E.; Haeckel, M. The SUGAR Toolbox—A Library of Numerical Algorithms and Data for Modelling of Gas Hydrate Systems and Marine Environments; Technical Report Report Nr. 8:160; GEOMAR: Kiel, Germany, 2013. [Google Scholar]
- Gupta, S.; Deusner, C.; Haeckel, M.; Helmig, R.; Wohlmuth, B. Testing a thermo-chemo-hydro-geomechanical model for gas hydrate-bearing sediments using triaxial compression laboratory experiments. Geochem. Geophys. Geosyst. 2017, 18, 3419–3437. [Google Scholar] [CrossRef] [Green Version]
- Gibson, N.L.; Patricia Medina, F.; Peszynska, M.; Showalter, R.E. Evolution of phase transitions in methane hydrate. J. Math. Anal. Appl. 2014, 409, 816–833. [Google Scholar] [CrossRef]
Initial Conditions | |||
---|---|---|---|
at , and 0 m m | = | ||
where m is the sea floor, | |||
and MPa is the water pressure at the sea floor. | |||
T | = | ||
where C is the bottom water temperature, | |||
and denotes the regional geothermal temperature gradient. | |||
= | 0 | ||
= | 0 | ||
= | |||
= | |||
at , | |||
if, m m, | = | ||
else if, m or m | = | 0 | |
Boundary Conditions | |||
, and m | = | ||
T | = | ||
= | 0 | ||
= | |||
, and m | = | 0 | |
= | |||
= | 0 | ||
= | 0 |
Property | Example 1 | Example 2 | ||
---|---|---|---|---|
Water | ||||
density | kg/m | |||
dynamic viscosity | Pa.s | |||
thermal conductivity | W/m/K | |||
specific heat capacity | J/kg/K | 3945 | ||
saturation vapor pressure | Pa | |||
where MPa, K, , and , , , , , . | ||||
diffusion coefficient | m/s | |||
Methane | ||||
density | kg/m | where , and is estimated using Peng Robinson EoS [52]. | ||
dynamic viscosity | Pa.s | |||
where | ||||
thermal conductivity | W/m/K | |||
where , , , and | ||||
specific heat capacity | J/kg/K | |||
solubility constant | Pa | |||
diffusion coefficient | m/s | |||
Hydrate | ||||
density | kg/m | 920 | ||
hydration number | − | |||
thermal conductivity | W/m/K | |||
specific heat capacity | J/kg/K | 2327 | ||
Salt | ||||
diffusion coefficient | m/s | |||
Soil | ||||
density | kg/m | 2600 | ||
thermal conductivity | W/m/K | |||
specific heat capacity | J/kg/K | 1000 | ||
Hydrate Phase Change Kinetics | ||||
hydrate equilibrium pressure | Pa | |||
kinetic rate constant | mol/m/Pa/s | |||
specific surface area | m/m | |||
heat of reaction | W/m | |||
Hydraulic Properties | ||||
absolute intrinsic permeability | m | |||
total porosity | − | |||
Brooks–Corey parameters | , | Pa,− | , | |
sphericity parameter | m | − | 1 | |
residual saturations | , | −,− | 0,0 |
Initial Conditions | |||
---|---|---|---|
tag: at , 0 m 1000 m and 0 m m | = | ||
where denotes the sea floor, m, | |||
and denotes the water pressure at the sea floor, MPa. | |||
T | = | ||
where C denotes the temperature at the sea floor, | |||
and, denotes the regional geothermal temperature gradient. | |||
= | 0 | ||
= | 0 | ||
= | |||
= | |||
at , and 0 m 1000 m, | |||
tag: : m m | = | rand | |
tag: : m or m | = | 0 | |
Boundary Conditions | |||
tag: | = | ||
, and 0 m m | = | 0 | |
= | 0 | ||
= | 0 | ||
tag: | = | ||
, and 0 m 1000 m | T | = | |
= | 0 | ||
= | |||
tag: | = | 0 | |
, m and 0 m m | = | 0 | |
= | 0 | ||
= | 0 | ||
tag: | = | 0 | |
, m and 0 m 1000 m | = | ||
= | 0 | ||
= | 0 | ||
tag: | = | 0 | |
, m and m m | = | 0 | |
= | 0 | ||
= | 0 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gupta, S.; Wohlmuth, B.; Haeckel, M. An All-At-Once Newton Strategy for Marine Methane Hydrate Reservoir Models. Energies 2020, 13, 503. https://doi.org/10.3390/en13020503
Gupta S, Wohlmuth B, Haeckel M. An All-At-Once Newton Strategy for Marine Methane Hydrate Reservoir Models. Energies. 2020; 13(2):503. https://doi.org/10.3390/en13020503
Chicago/Turabian StyleGupta, Shubhangi, Barbara Wohlmuth, and Matthias Haeckel. 2020. "An All-At-Once Newton Strategy for Marine Methane Hydrate Reservoir Models" Energies 13, no. 2: 503. https://doi.org/10.3390/en13020503
APA StyleGupta, S., Wohlmuth, B., & Haeckel, M. (2020). An All-At-Once Newton Strategy for Marine Methane Hydrate Reservoir Models. Energies, 13(2), 503. https://doi.org/10.3390/en13020503