The Role of Multiple Injections on Combustion in a Light-Duty PPC Engine
Abstract
:1. Introduction
2. Computational Cases and Engine Operation Conditions
3. Computational Model
4. Results and Discussion
4.1. Validation of the LES Model
4.2. Characteristics of the Partially Premixed Combustion Process
- Low-temperature chemistry, T < 850 K
- Mid-temperature chemistry, 850 K < T < 1200 K
- High-temperature chemistry, T > 1200 K
4.3. Sensitivity to the Injection Strategy
- the injection timing;
- the injection direction and piston bowl position.
5. Conclusions
- Depending on the equivalence ratio the stratified mixtures behave differently. Fuel-lean mixtures (Φ < 0.2) ignite earlier but their overall heat release is low. The main effect of fuel-lean mixtures is to assist the ignition of the fuel-richer mixtures. Mixtures in the equivalence ratio range of 0.2 < Φ < 0.7 have the highest heat release rate. In the present PPC engine most of the fuel lies in these mixtures; thus, optimization of the engine performance is largely depending on the mixtures in the equivalence ratio range of 0.2 < Φ < 0.7. The mixtures in the equivalence ratio range of 0.7 < Φ < 1.2 give also high heat release rate but they also give rise to high CO and NO emissions. Mixtures in the equivalence ratio range of Φ > 1.2 gives rise to the emissions of unburned fuel, CO, and soot.
- The performance of PPC engines is very sensitive to the injection strategies. Multiple injection of fuel generates stratified fuel/air mixture. Too earlier injection would result in a fuel-lean mixture, e.g., in the equivalence ratio range of Φ < 0.2; higher initial temperature is required to ignite such mixture and the pressure-rise rate will be high, similar to that in HCCI engines. Too later ignition would result in fuel-rich mixtures similar to diesel engines.
- The performance of PPC engines is also sensitive to the orientation of the injection. The injected fuel stream interacts with the piston bowl. If the fuel is injected directly to the bowl the mixing would be fast and fuel-lean mixtures would be generated. In the present study it is seen that too late second injection would yield a direct injection of the fuel to the bowl.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Reitz, R.D. Directions in IC engines research. Combust. Flame 2013, 160, 1–8. [Google Scholar] [CrossRef]
- Noehre, C.; Andersson, M.; Johansson, B.; Hultqvist, A. Characterization of Partially Premixed Combustion. SAE Tech. Paper Ser. 2006. [Google Scholar] [CrossRef]
- Kalghatgi, G.T.; Risberg, P.; Ångström, H.-E. Advantages of Fuels with High Resistance to Auto-ignition in Late-injection, Low-temperature, Compression Ignition Combustion. SAE Tech. Pap. Ser. 2006. [Google Scholar] [CrossRef]
- Manente, V.; Johansson, B.; Tunestal, P.; Cannella, W. Effects of Different Type of Gasoline Fuels on Heavy Duty Partially Premixed Combustion. SAE Int. J. Engines 2009, 2, 71–88. [Google Scholar] [CrossRef]
- Li, C.; Yin, L.; Shamun, S.; Tuner, M.; Johansson, B.; Solsjo, R.; Bai, X.-S. Transition from HCCI to PPC: The Sensitivity of Combustion Phasing to the Intake Temperature and the Injection Timing with and without EGR. SAE Tech. Pap. Ser. 2016, 1. [Google Scholar] [CrossRef]
- Belgiorno, G.; Dimitrakopoulos, N.; Di Blasio, G.; Beatrice, C.; Tuner, M.; Tunestal, P. Parametric Analysis of the Effect of Pilot Quantity, Combustion Phasing and EGR on Efficiencies of a Gasoline PPC Light-Duty Engine. SAE Tech. Pap. Ser. 2017, 1. [Google Scholar] [CrossRef]
- Belgiorno, G.; Dimitrakopoulos, N.; Di Blasio, G.; Beatrice, C.; Tunestål, P.; Tunér, M. Effect of the engine calibration parameters on gasoline partially premixed combustion performance and emissions compared to conventional diesel combustion in a light-duty Euro 6 engine. Appl. Energy 2018, 228, 2221–2234. [Google Scholar] [CrossRef]
- Sellnau, M.; Foster, M.; Moore, W.; Sinnamon, J.; Hoyer, K.; Klemm, W. Pathway to 50% Brake Thermal Efficiency Using Gasoline Direct Injection Compression Ignition. SAE Tech. Pap. Ser. 2019, 1, 1581–1603. [Google Scholar] [CrossRef]
- Cho, K.; Zhao, L.; Ameen, M.; Zhang, Y.; Pei, Y.; Moore, W.; Sellnau, M. Understanding Fuel Stratification Effects on Partially Premixed Compression Ignition (PPCI) Combustion and Emissions Behaviors. SAE Tech. Pap. Ser. 2019. [Google Scholar] [CrossRef]
- Xu, L.; Bai, X.-S.; Li, C.; Tunestål, P.; Tunér, M.; Lu, X. Combustion characteristics of gasoline DICI engine in the transition from HCCI to PPC: Experiment and numerical analysis. Energy 2019, 185, 922–937. [Google Scholar] [CrossRef]
- Xu, L.; Bai, X.-S.; Li, C.; Tunestål, P.; Tunér, M.; Lu, X. Emission characteristics and engine performance of gasoline DICI engine in the transition from HCCI to PPC. Fuel 2019, 254, 115619. [Google Scholar] [CrossRef]
- Borgqvist, P.; Tuner, M.; Mello, A.; Tunestal, P.; Johansson, B. The Usefulness of Negative Valve Overlap for Gasoline Partially Premixed Combustion, PPC. SAE Tech. Pap. Ser. 2012. [Google Scholar] [CrossRef]
- Borgqvist, P.; Andersson, O.; Tunestal, P.; Johansson, B. The Low Load Limit of Gasoline Partially Premixed Combustion Using Negative Valve Overlap. J. Eng. Gas Turbines Power 2013, 135, 062002. [Google Scholar] [CrossRef]
- Sellnau, M.C.; Sinnamon, J.; Hoyer, K.; Husted, H. Full-Time Gasoline Direct-Injection Compression Ignition (GDCI) for High Efficiency and Low NOx and PM. SAE Int. J. Engines 2012, 5, 300–314. [Google Scholar] [CrossRef]
- Sellnau, M.C.; Sinnamon, J.; Hoyer, K.; Kim, J.; Cavotta, M.; Husted, H. Part-Load Operation of Gasoline Direct-Injection Compression Ignition (GDCI) Engine. SAE Tech. Pap. Ser. 2013. [Google Scholar] [CrossRef]
- Dempsey, A.B.; Wang, B.-L.; Reitz, R.D.; Petersen, B.; Sahoo, D.; Miles, P.C. Comparison of Quantitative In-Cylinder Equivalence Ratio Measurements with CFD Predictions for a Light Duty Low Temperature Combustion Diesel Engine. SAE Int. J. Engines 2012, 5, 162–184. [Google Scholar] [CrossRef]
- Petersen, B.; Miles, P.C.; Sahoo, D. Equivalence Ratio Distributions in a Light-Duty Diesel Engine Operating under Partially Premixed Conditions. SAE Int. J. Engines 2012, 5, 526–537. [Google Scholar] [CrossRef]
- Musculus, M.P.; Miles, P.C.; Pickett, L.M. Conceptual models for partially premixed low-temperature diesel combustion. Prog. Energy Combust. Sci. 2013, 39, 246–283. [Google Scholar] [CrossRef]
- Bowditch, F.W. A New Tool for Combustion Research A Quartz Piston Engine. SAE Tech. Pap. Ser. 1961, 610002. [Google Scholar] [CrossRef]
- Borgqvist, P.; Tunestal, P.; Johansson, B. Gasoline Partially Premixed Combustion in a Light Duty Engine at Low Load and Idle Operating Conditions. SAE Tech. Pap. Ser. 2012. [Google Scholar] [CrossRef]
- Zhang, F.; Yu, R.; Bai, X.S. Direct numerical simulation of PRF70/air partially premixed combustion under IC engine conditions. Proc. Combust. Inst. 2015, 35, 2975–2982. [Google Scholar] [CrossRef]
- Zhang, F.; Yu, R.; Bai, X.S. Effect of split fuel injection on heat release and pollutant emissions in partially premixed combustion of PRF70/air/EGR mixtures. Appl. Energy 2015, 149, 283–296. [Google Scholar] [CrossRef]
- Ibron, C.; Fatehi, H.; Wang, Z.; Stamatoglou, P.; Lundgren, M.; Alden, M.; Richter, M.; Anderssona, O.; Bai, X.S. A Numerical simulation of a mixed-mode reaction front in a PPC engine. Ph.D. Thesis, Lund University, Lund, Sweden, 2019. [Google Scholar]
- Rutland, C.J. Large-eddy simulations for internal combustion engines—A review. Int. J. Engine Res. 2011, 12, 421–451. [Google Scholar] [CrossRef] [Green Version]
- Kong, S.-C.; Reitz, R. Numerical study of premixed HCCI engine combustion and its sensitivity to computational mesh and model uncertainties. Combust. Theory Model. 2003, 7, 417–433. [Google Scholar] [CrossRef]
- Bharadwaj, N.; Rutland, C.J.; Chang, S. Large eddy simulation modelling of spray-induced turbulence effects. Int. J. Engine Res. 2009, 10, 97–119. [Google Scholar] [CrossRef]
- Menon, S. Subgrid combustion modelling for large-eddy simulations. Int. J. Engine Res. 2000, 1, 209–227. [Google Scholar] [CrossRef]
- Jangi, M.; Solsjo, R.; Johansson, B.; Bai, X.-S. On large eddy simulation of diesel spray for internal combustion engines. Int. J. Heat Fluid Flow 2015, 53, 68–80. [Google Scholar] [CrossRef]
- Jiang, X.; Siamas, G.; Jagus, K.; Karayiannis, T. Physical modelling and advanced simulations of gas–liquid two-phase jet flows in atomization and sprays. Prog. Energy Combust. Sci. 2010, 36, 131–167. [Google Scholar] [CrossRef]
- Crowe, C.T.; Schwarzkopf, J.D.; Sommerfeld, M.; Tsuji, Y. Multiphase Flows with Droplets and Particles; CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar]
- The Open Source CFD Toolbox OpenFoam. Available online: http://www.openfoam.com (accessed on 20 October 2020).
- Jangi, M.; Bai, X.-S. Multidimensional chemistry coordinate mapping approach for combustion modelling with finite-rate chemistry. Combust. Theory Model. 2012, 16, 1109–1132. [Google Scholar] [CrossRef]
- Jangi, M.; Yu, R.; Bai, X.-S. Development of Chemistry Coordinate Mapping Approach for Turbulent Partially Premixed Combustion. Flow Turbul. Combust. 2012, 90, 285–299. [Google Scholar] [CrossRef]
- Jangi, M.; Yu, R.; Bai, X.-S. A multi-zone chemistry mapping approach for direct numerical simulation of auto-ignition and flame propagation in a constant volume enclosure. Combust. Theory Model. 2011, 16, 221–249. [Google Scholar] [CrossRef]
- Gong, C.; Jangi, M.; Bai, X.-S. Large eddy simulation of n-Dodecane spray combustion in a high pressure combustion vessel. Appl. Energy 2014, 136, 373–381. [Google Scholar] [CrossRef]
- Solsjö, R.; Jangi, M.; Chartier, C.; Andersson, O.; Bai, X.-S. Lift-off and stabilization of n-heptane combustion in a diesel engine with a multiple-nozzle injection. Proc. Combust. Inst. 2013, 34, 3031–3038. [Google Scholar] [CrossRef]
- Jangi, M.; Lucchini, T.; D’Errico, G.; Bai, X.-S. Effects of EGR on the structure and emissions of diesel combustion. Proc. Combust. Inst. 2013, 34, 3091–3098. [Google Scholar] [CrossRef]
- Jangi, M.; Zhao, X.; Haworth, D.C.; Bai, X.-S. Stabilization and liftoff length of a non-premixed methane/air jet flame discharging into a high-temperature environment: An accelerated transported PDF method. Combust. Flame 2015, 162, 408–419. [Google Scholar] [CrossRef]
- Liu, Y.D.; Jia, M.; Xie, M.Z.; Pang, B. Enhancement on a skeletal kinetic model for primary reference fuel oxidation by using a semi-decoupling methodology. Energy Fuels 2012, 26, 7069–7083. [Google Scholar] [CrossRef]
- Kong, S.-C.; Sun, Y.; Rietz, R.D. Modeling Diesel Spray Flame Liftoff, Sooting Tendency, and NOx Emissions Using Detailed Chemistry with Phenomenological Soot Model. J. Eng. Gas Turbines Power 2005, 129, 245–251. [Google Scholar] [CrossRef]
- Jasak, H.; Tukovic, Z. Automatic mesh motion for the unstructured finite volume method. Trans. FAMENA 2007, 30, 1–20. [Google Scholar]
- Yu, R.; Bai, X.-S. A fully divergence-free method for generation of inhomogeneous and anisotropic turbulence with large spatial variation. J. Comput. Phys. 2014, 256, 234–253. [Google Scholar] [CrossRef]
- Westbrook, C.K. Chemical kinetics of hydrocarbon ignition in practical combustion systems. Proc. Combust. Inst. 2000, 28, 1563–1577. [Google Scholar] [CrossRef] [Green Version]
Case | Injection | 1 | 2 | 3 |
---|---|---|---|---|
1 | (CAD bTDC/mg fuel per hole) | 48/0.5 | 22/0.5 | 5/0.56 |
2 | (CAD bTDC/mg fuel per hole) | 48/0.5 | 17/0.5 | 5/0.56 |
3 | (CAD bTDC/mg fuel per hole) | 48/0.765 | - | 5/0.815 |
4 | (CAD bTDC/mg fuel per hole) | 48/0.5 | 27/0.5 | 5/0.56 |
Case | Specification | IMEP [bar] | Peak PRR [bar/CA] |
---|---|---|---|
1 | Baseline case | 2.58 | 2.48 |
1a | Case 1, with initial turbulence | 2.55 | 2.95 |
2 | Second injection retarded | 2.29 | 1.51 |
2a | Case 2 with 15 K higher T0 | 2.56 | 2.90 |
3 | Second injection removed | 1.61 | - |
3a | Case 3 with 15 K higher T0 | 2.09 | 0.39 |
3b | Case 3 with 30 K higher T0 | 2.35 | 1.25 |
4 | Second injection advanced | 1.33 | 0.14 |
4a | Case 4 with 15 K higher T0 | 1.35 | 0.45 |
4b | Case 4 with 30 K higher T0 | 1.44 | 1.36 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Solsjö, R.; Jangi, M.; Johansson, B.; Bai, X.-S. The Role of Multiple Injections on Combustion in a Light-Duty PPC Engine. Energies 2020, 13, 5535. https://doi.org/10.3390/en13215535
Solsjö R, Jangi M, Johansson B, Bai X-S. The Role of Multiple Injections on Combustion in a Light-Duty PPC Engine. Energies. 2020; 13(21):5535. https://doi.org/10.3390/en13215535
Chicago/Turabian StyleSolsjö, Rickard, Mehdi Jangi, Bengt Johansson, and Xue-Song Bai. 2020. "The Role of Multiple Injections on Combustion in a Light-Duty PPC Engine" Energies 13, no. 21: 5535. https://doi.org/10.3390/en13215535
APA StyleSolsjö, R., Jangi, M., Johansson, B., & Bai, X. -S. (2020). The Role of Multiple Injections on Combustion in a Light-Duty PPC Engine. Energies, 13(21), 5535. https://doi.org/10.3390/en13215535