Feasibility of a 100% Global Renewable Energy System
Abstract
:1. Introduction
2. General Constraints on Hydro, Geothermal, and Biomass Energy
3. Evaluation Under Future Conditions is Needed for a 100% RE Scenario
4. Review of EROEI Evaluation in the Literature
4.1. EREOI for Solar Energy
4.2. EREOI for Wind Energy
5. Improving EROEI Estimates in a 100% Wind/Solar System
- To estimate total energy potentially available from wind/solar, as discussed in Section 4;
- To assess the viability of any given RE project.
5.1. Declining Quality of Inputs
5.2. Uncounted Environmental Costs
5.3. Need for Energy Conversion and Storage
- Output, even if constant, will usually not match instantaneous demand load.
- Output will, in fact, vary over time, with periods of over- and under-production, even if the demand load were constant. Expanding the coverage of the solar/wind power grid will smooth output to some extent, but at the cost of extra transmission infrastructure.
5.4. Removal of Fossil Fuel ‘Subsidy’
6. Discussion and Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
b-a-u | business-as-usual |
CO2 | carbon dioxide |
CSP | Concentrated Solar Power |
EIA | Energy Information Administration |
EJ | exajoule (1018 joule) |
EPBT | energy payback time |
EROI | energy return on energy invested |
EU | European Union |
FF | fossil fuels |
GHG | greenhouse gas |
GJ | gigajoule (109 joule) |
GW | gigawatt |
H2 | hydrogen |
IEA | International Energy Agency |
IRENA | International Renewable Energy Agency |
IPCC | Intergovernmental Panel on Climate Change |
Mt | megatonne (106 tonne) |
Mtoe | million tonne of oil equivalent |
MWe | megawatt electric (106 watt) |
NPS | New Policies Scenario |
O&M | Operation and Maintenance |
OECD | Organization for Economic Cooperation and Development |
OPEC | Organization of the Petroleum Exporting Countries |
ppm | parts per million |
PV | photovoltaic |
RE | renewable energy |
SDS | Sustainable Development Scenario |
STEC | solar thermal electricity conversion |
TWh | terawatt-hour (1012 watt-hr) |
References
- Jacobson, M.Z.; Delucchi, M.A.; Cameron, M.A.; Frew, B.A. Low-cost solution to the grid reliability problem with 100% penetration of intermittent wind, water, and solar for all purposes. Proc. Natl. Acad. Sci. USA 2015, 112, 15060–15065. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jacobson, M.Z. Roadmaps to transition countries to 100% clean, renewable energy for all purposes to curtail global warming, air pollution, and energy risk. Earth’s Future 2017, 5, 948–952. [Google Scholar] [CrossRef]
- Jacobson, M.Z.; Delucchi, M.A.; Bauer, Z.A.F.; Goodman, S.C.; Chapman, W.E.; Cameron, M.A.; Bozonnat, C.; Chobadi, L.; Clonts, H.A.; Enevoldsen, P.; et al. 100% clean and renewable wind, water, and sunlight all-sector energy roadmaps for 139 countries of the world. Joule 2017, 1, 108–121. [Google Scholar] [CrossRef] [Green Version]
- Davis, S.J.; Lewis, N.S.; Shaner, M.; Aggarwal, S.; Arent, D.; Azevedo, I.L.; Benson, S.M.; Thomas Bradley, T.; Brouwer, J.; Chiang, Y.-M.; et al. Net-zero emissions energy systems. Science 2018, 360, eaas9793. [Google Scholar] [CrossRef] [Green Version]
- Ram, M.; Bogdanov, D.; Aghahosseini, A.; Gulagi, A.; Oyewo, A.S.; Child, M.; Caldera, U.; Sadovskaia, K.; Farfan, J.; Barbosa, L.S.N.S.; et al. Global Energy System Based on 100% Renewable Energy—Power, Heat, Transport and Desalination Sectors; Lappeenranta University of Technology and Energy Watch Group: Lappeenranta, Berlin, Germany, 2019. [Google Scholar]
- Budischak, C.; Sewell, D.; Heather Thomson, H.; Mach, L.; Veron, D.E.; Kempton, W. Cost-minimized combinations of wind power, solar power and electrochemical storage, powering the grid up to 99.9% of the time. J. Power Sources 2013, 225, 60–74. [Google Scholar] [CrossRef] [Green Version]
- Ellabban, O.; Abu-Rub, H.; Blaabjerg, F. Renewable energy resources: Current status, future prospects and their enabling technology. Renew. Sustain. Energy Rev. 2014, 39, 748–764. [Google Scholar] [CrossRef]
- Loftus, P.J.; Cohen, A.M.; Long, J.C.S.; Jesse, D.; Jenkins, J.D. A critical review of global decarbonization scenarios: What do they tell us about feasibility? WIREs Clim. Chang. 2015, 6, 93–112. [Google Scholar] [CrossRef]
- Smil, V. A skeptic looks at alternative energy. IEEE Spectr. 2012, 49, 46–52. [Google Scholar] [CrossRef]
- Smil, V. It’ll be harder than we thought to get the carbon out. IEEE Spectr. 2018, 55, 72–75. [Google Scholar] [CrossRef]
- Trainer, T. Can Europe run on renewable energy? A negative case. Energy Pol. 2013, 63, 845–850. [Google Scholar] [CrossRef]
- Trainer, T. 100% Renewable supply? Comments on the reply by Jacobson and Delucchi to the critique by Trainer. Energy Pol. 2013, 57, 634–640. [Google Scholar] [CrossRef]
- Moriarty, P.; Honnery, D. Can renewable energy power the future? Energy Pol. 2016, 93, 3–7. [Google Scholar] [CrossRef]
- Heard, B.; Brook, B.; Wigley, T.; Bradshaw, C. Burden of proof: A comprehensive review of the feasibility of 100% renewable-electricity systems. Renew. Sustain. Energy Rev. 2017, 76, 1122–1133. [Google Scholar] [CrossRef]
- Capellán-Pérez, I.; De Blas, I.; Nieto, J.; De Castro, C.; Miguel, L.J.; Carpintero, Ó.; Mediavilla, M.; Lobejón, L.F.; Ferreras-Alonso, N.; Rodrigo, P.; et al. MEDEAS: A new modeling framework integrating global biophysical and socioeconomic constraints. Energy Environ. Sci. 2020, 13, 986–1017. [Google Scholar] [CrossRef]
- Nieto, J.; Carpintero, O.; Miguel, L.J.; de Blas, I. Macroeconomic modelling under energy constraints: Global low carbon transition scenarios. Energy Pol. 2020, 137, 111090. [Google Scholar] [CrossRef] [Green Version]
- Pickard, W.F. Energy return on energy invested (EROI): A quintessential but possibly inadequate metric for sustainability in a solar-powered world. Proc. IEEE 2014, 102, 1118–1122. [Google Scholar] [CrossRef]
- World Bank (WB). Global Economic Prospects: June 2020; WB: Washington, DC, USA, 2020; Available online: https://www.worldbank.org/en/publication/global-economic-prospects (accessed on 21 June 2020).
- International Energy Agency (IEA). Key World Energy Statistics 2019; IEA/OECD: Paris, France, 2019. [Google Scholar]
- Kembleton, R. Nuclear fusion: What of the future? In Managing Global Warming an Interface of Technology and Human Issues; Letcher, T., Ed.; Academic Press: London, UK, 2019; pp. 199–220. [Google Scholar]
- Moriarty, P.; Honnery, D. Review: Assessing the climate mitigation potential of biomass. AIMS Energy 2017, 5, 20–38. [Google Scholar] [CrossRef]
- Searchinger, T.D.; Beringer, T.; Strong, A. Does the world have low-carbon bioenergy potential from the dedicated use of land? Energy Pol. 2017, 110, 434–446. [Google Scholar] [CrossRef]
- Moriarty, P.; Honnery, D. Energy accounting for a renewable energy future. Energies 2019, 12, 4280. [Google Scholar] [CrossRef] [Green Version]
- United Nations (UN) World Population Prospects 2019. 2019. Available online: httpsar://population.un.org/wpp/ (accessed on 24 June 2020).
- BP. BP Statistical Review of World Energy 2020; BP: London, UK, 2020. [Google Scholar]
- Hoes, O.A.C.; Meijer, L.J.J.; Van Der Ent, R.J.; Van De Giesen, N. Systematic high-resolution assessment of global hydropower potential. PLoS ONE 2017, 12, e0171844. [Google Scholar] [CrossRef]
- Zhou, Y.; Hejazi, M.; Smith, S.; Edmonds, J.; Li, H.-Y.; Clarke, L.; Calvin, K.; Thomson, A. A comprehensive view of global potential for hydro-generated electricity. Energy Environ. Sci. 2015, 8, 2622–2633. [Google Scholar] [CrossRef]
- Grossman, D.; Galdeiri, D. The sunken rainforest. New Sci. 2019, 21, 42–45. [Google Scholar]
- Moriarty, P.; Honnery, D. What is the global potential for renewable energy? Renew. Sustain. Energy Rev. 2012, 16, 244–252. [Google Scholar] [CrossRef]
- Moriarty, P.; Honnery, D. Ecosystem maintenance energy and the need for a green EROI. Energy Pol. 2019, 131, 229–234. [Google Scholar] [CrossRef]
- Laghari, J.R. Melting glaciers bring energy uncertainty. Nature 2013, 502, 617–618. [Google Scholar] [CrossRef]
- Moriarty, P.; Honnery, D. Energy policy and economics under climate change. AIMS Energy 2018, 6, 272–290. [Google Scholar] [CrossRef]
- Kumari, W.G.P.; Ranjith, P.G. Sustainable development of enhanced geothermal systems based on geotechnical research—A review. Earth Sci. Rev. 2019, 199, 102955. [Google Scholar] [CrossRef]
- JOGMEC. Current Situation of Geothermal Power Generation in Japan; Japan Oil, Gas and Metals National Corporation: 2019. Available online: http://geothermal.jogmec.go.jp/report/file/session_160602_01.pdf (accessed on 13 October 2020).
- Tosha, T.; Nishikawa, N.; Shimada, T. Country Update of Geothermal Energy Development in Japan and the Activity of JOGMEC. 2016. Available online: http://pubs.geothermal-library.org/lib/grc/1032304.pdf (accessed on 24 July 2020).
- Van Haren, H. The pull of the tide. New Sci. 2018, 23, 24–25. [Google Scholar] [CrossRef]
- International Renewable Energy Agency (IRENA). Renewable Capacity Statistics 2020; IRENA: Abu Dhabi, UAE, 2020. [Google Scholar]
- Energy Information Agency (EIA). Short-Term Energy Outlook (STEO). April 2020. Available online: https://www.eia.gov/outlooks/steo/pdf/steo_full.pdf (accessed on 24 July 2020).
- Energy Information Administration (EIA). International Energy Outlook 2019. Available online: https://www.eia.gov/outlooks/ieo/ (accessed on 14 June 2020).
- Energy Information Administration (EIA). Annual Energy Outlook 2020. Available online: https://www.eia.gov/outlooks/aeo/ (accessed on 25 June 2020).
- International Energy Agency (IEA). Global Energy Review 2020: The Impacts of the Covid-19 Crisis on Global Energy Demand and CO2 Emissions; IEA/OECD: Paris, France, 2020. [Google Scholar]
- BP. BP Energy Outlook: 2019 Edition; BP: London, UK, 2019. [Google Scholar]
- ExxonMobil. Outlook for Energy: A View to 2040; ExxonMobil: Irving, TX, USA, 2019. [Google Scholar]
- International Renewable Energy Agency (IRENA). Future of Wind: Deployment, Investment, Technology, Grid Integration and Socio-Economic Aspects. 2019. Available online: https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2019/Oct/IRENA_Future_of_wind_2019.pdf (accessed on 8 July 2020).
- Organization of the Petroleum Exporting Countries (OPEC). 2019 OPEC World Oil Outlook. 2019. Available online: http://www.opec.org (accessed on 19 July 2020).
- International Energy Agency (IEA). Sustainable Development Scenario. 2019. Available online: https://www.iea.org/weo/weomodel/sds/ (accessed on 17 June 2020).
- King, L.C.; van den Bergh, J.C.J.M. Implications of net energy-return-on-investment for a low-carbon energy transition. Nat. Energy 2018, 3, 334–340. [Google Scholar] [CrossRef] [Green Version]
- Hall, C.A.S. Energy Return on Investment: A Unifying Principle for Biology, Economics, and Sustainability; Lecture Notes in Energy Volume 36; Springer: Cham, Switzerland.
- Hall, C.A.S. Will EROI be the primary determinant of our economic future? The view of the natural scientist versus the economist. Joule 2017, 1, 635–638. [Google Scholar] [CrossRef] [Green Version]
- Hall, C.A.S.; Lambert, J.G.; Balogh, S.B. EROI of different fuels and the implications for society. Energy Pol. 2014, 64, 141–152. [Google Scholar] [CrossRef] [Green Version]
- De Castro, C.; Capellán-Pérez, I. Standard, point of use, and extended energy return on energy invested (EROI) from comprehensive material requirements of present global wind, solar, and hydro power technologies. Energies 2020, 13, 3036. [Google Scholar] [CrossRef]
- Hall, C.A.S.; Balogh, S.; Murphy, D.J.R. What is the minimum EROI that a sustainable society must have? Energies 2009, 2, 25–47. [Google Scholar] [CrossRef]
- Weißbach, D.; Ruprecht, G.; Huke, A.; Czerski, K.; Gottlieb, S.; Hussein, A. Energy intensities, EROIs (energy returned on invested), and energy payback times of electricity generating power plants. Energy 2013, 52, 210–221. [Google Scholar] [CrossRef]
- Fizaine, F.; Court, V. Energy expenditure, economic growth, and the minimum EROI of society. Energy Pol. 2016, 95, 172–186. [Google Scholar] [CrossRef]
- Raugei, M. Net energy analysis must not compare apples and oranges. Nat. Energy 2019, 4, 86–88. [Google Scholar] [CrossRef]
- Ferroni, F.; Hopkirk, R.J. Energy Return on Energy Invested (ERoEI) for photovoltaic solar systems in regions of moderate insolation. Energy Pol. 2016, 94, 336–344. [Google Scholar] [CrossRef] [Green Version]
- Ferroni, F.; Hopkirk, R.J.; Guekos, A. Further consideration to: Energy Return on Energy Invested (ERoEI) for photovoltaic solar systems in region of moderate insolation. Energy Pol. 2017, 107, 498–505. [Google Scholar] [CrossRef]
- Louwen, A.; van Sark, W.G.J.H.M.; Faaij, A.P.C.; Schropp, R.E.I. Re-assessment of net energy production and greenhouse gas emissions avoidance after 40 years of photovoltaics development. Nat. Comm. 2016, 7, 13728. [Google Scholar] [CrossRef]
- Palmer, G.; Floyd, J. An exploration of divergence in EPBT and EROI for solar photovoltaics. BioPhys. Econ. Resour. Qual. 2017, 2, 15. [Google Scholar] [CrossRef] [Green Version]
- Martinopoulos, G. Are rooftop photovoltaic systems a sustainable solution for Europe? A life cycle impact assessment and cost analysis. App. Energy 2020, 257, 114035. [Google Scholar] [CrossRef]
- Pickard, W.F. A simple lower bound on the EROI of photovoltaic electricity generation. Energy Pol. 2017, 107, 488–490. [Google Scholar] [CrossRef]
- Raugei, M.; Sgouridis, S.; Murphy, D.; Fthenakis, V.; Frischknecht, R.; Breyer, C.; Bardi, U.; Barnhart, C.; Buckley, A.; Carbajales-Dale, M.; et al. Energy Return on Energy Invested (ERoEI) for photovoltaic solar systems in region of moderate insolation: A comprehensive response. Energy Pol. 2017, 102, 377–384. [Google Scholar] [CrossRef]
- Espinosa, N.; Hosel, M.; Angmo, D.; Krebs, F.C. Solar cells with one-day energy payback for the factories of the future. Energy Environ. Sci. 2012, 5, 5117. [Google Scholar] [CrossRef]
- Liu, F.; van den Bergh, J.C.J.M. Differences in CO2 emissions of solar PV production among technologies and regions: Application to China, EU and USA. Energy Pol. 2020, 138, 111234. [Google Scholar] [CrossRef]
- De Castro, C.; Capellán-Pérez, I. Concentrated Solar Power: Actual Performance and Foreseeable Future in High Penetration Scenarios of Renewable Energies. Biophys. Econ. Resour. Qual. 2018, 3, 14. [Google Scholar] [CrossRef]
- Statista. Annual Solar Module Production Globally from 2000 to 2018. 2020. Available online: https://www.statista.com/statistics/668764/annual-solar-module-manufacturing-globally/ (accessed on 27 June 2020).
- Davidsson, S.; Höök, M.; Wall, G. A review of life cycle assessments on wind energy systems. Int. J. Life Cycle Assess. 2012, 17, 729–742. [Google Scholar] [CrossRef]
- Lenzen, M.; Munksgaard, J. Energy and CO2 life-cycle analyses of wind turbines—Review and applications. Renew. Energy 2002, 26, 339–362. [Google Scholar] [CrossRef]
- Kadiyala, A.; Kommalapati, R.; Huque, Z. Characterization of the life cycle greenhouse gas emissions from wind electricity generation systems. Int. J. Energy Environ. Eng. 2017, 8, 55–64. [Google Scholar] [CrossRef] [Green Version]
- Kaldellis, J.K.; Apostolou, D. Life cycle energy and carbon footprint of offshore wind energy. Comparison with onshore counterpart. Renew. Energy 2017, 108, 72–84. [Google Scholar] [CrossRef]
- Tremeac, B.; Meunier, F. Life cycle analysis of 4.5MW and 250W wind turbines. Renew. Sustain. Energy Rev. 2009, 13, 2104–2110. [Google Scholar] [CrossRef]
- Alsaleh, A.; Sattler, M. Comprehensive life cycle assessment of large wind turbines in the US. Clean Technol. Environ. Pol. 2019, 21, 887–903. [Google Scholar] [CrossRef]
- Brockway, P.E.; Owen, A.; Brand-Correa, L.I.; Hardt, L. Estimation of global final-stage energy-return-on-investment for fossil fuels with comparison to renewable energy sources. Nat. Energy 2019, 4, 612–621. [Google Scholar] [CrossRef] [Green Version]
- Capellán-Pérez, I.; de Castro, C.; Arto, I. Assessing vulnerabilities and limits in the transition to renewable energies: Land requirements under 100% solar energy scenarios. Renew. Sustain. Energy Rev. 2017, 77, 760–782. [Google Scholar] [CrossRef] [Green Version]
- Sahu, A.; Yadav, N.; Sudhakar, K. Floating photovoltaic power plant: A review. Renew. Sustain. Energy Rev. 2016, 66, 815–824. [Google Scholar] [CrossRef]
- Dupont, E.; Jeanmart, H. Global potential of wind and solar energy with physical and energy return on investment (EROI) constraints; application at the European level (EU 28 countries). In Proceedings of the ECOS 2019-32nd International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, Wroclaw, Poland, 23–28 June 2019. [Google Scholar]
- Dupont, E.; Koppelaar, R.; Jeanmart, H. Global available solar energy under physical and energy return on investment constraints. Appl. Energy 2020, 257, 113968. [Google Scholar] [CrossRef]
- Wiedmann, T.; Lenzen, M.; Lorenz, T.; Keyßer, L.T.; Steinberger, J.K. Scientists’ warning on affluence. Nat. Comm. 2020, 11, 3107. [Google Scholar] [CrossRef] [PubMed]
- Calvo, G.; Mudd, G.; Valero, A.; Valero, A. Decreasing ore grades in global metallic mining: A theoretical issue or a global reality? Resources 2016, 5, 36. [Google Scholar] [CrossRef] [Green Version]
- Moreau, V.; Dos Reis, P.C.; Vuille, F. Enough metals? Resource constraints to supply a fully renewable energy system. Resources 2019, 8, 29. [Google Scholar] [CrossRef] [Green Version]
- Van den Bergh, J.; Folke, C.; Polasky, S.; Scheffer, M.; Steffen, W. What if solar energy becomes really cheap? A thought experiment on environmental problem shifting. Curr. Opin. Environ. Sustain. 2015, 14, 170–179. [Google Scholar] [CrossRef]
- Hoegh-Guldberg, O.; Jacob, D.; Taylor, M.; Guillén Bolaños, T.; Bindi, M.; Brown, S.; Camilloni, I.A.; Diedhiou, A.; Djalante, R.; Ebi, K.; et al. The human imperative of stabilizing global climate change at 1.5 °C. Science 2019, 365, 1263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lade, S.J.; Steffen, W.; de Vries, W.; Carpenter, S.R.; Donges, J.F.; Gerten, D.; Hoff, H.; Newbold, T.; Katherine Richardson, K.; Rockström, J. Human impacts on planetary boundaries amplified by Earth system interactions. Nat. Sustain. 2020, 3, 119–128. [Google Scholar] [CrossRef]
- Hadian, S.; Madani, K. A system of systems approach to energy sustainability assessment: Are all renewables really green? Ecol. Indic. 2015, 52, 194–206. [Google Scholar] [CrossRef]
- Rehbein, J.A.; Watson, J.E.M.; Lane, J.L.; Sonter, L.J.; Venter, O.; Atkinson, S.C.; Allan, J.R. Renewable energy development threatens many globally important biodiversity areas. Glob. Chang. Biol. 2020, 26, 3040–3051. [Google Scholar] [CrossRef]
- Ajanovic, A.; Haas, R. Economic prospects and policy framework for hydrogen as fuel in the transport sector. Energy Pol. 2018, 123, 280–288. [Google Scholar] [CrossRef]
- Sinn, H.-W. Buffering volatility: A study on the limits of Germany’s energy revolution. Eur. Econ. Rev. 2017, 99, 130–150. [Google Scholar] [CrossRef]
- Raugei, M. Comments on “Energy intensities, EROIs (energy returned on invested), and energy payback times of electricity generating power plants”. Making clear of quite some confusion. Energy 2013, 59, 781–782. [Google Scholar] [CrossRef]
- Sgouridis, S.; Carbajales-Dale, M.; Csala, D.; Chiesa, M.; Bardi, U. Comparative net energy analysis of renewable electricity and carbon capture and storage. Nat. Energy 2019, 4, 456–465. [Google Scholar] [CrossRef] [Green Version]
- Lovins, A.B.; Ürge-Vorsatz, D.; Mundaca, L.; Kammen, D.M.; Glassman, J.W. Recalibrating climate prospects. Environ. Res. Lett. 2019, 14, 120201. [Google Scholar] [CrossRef]
- Parrique, T.; Barth, J.; Briens, F.; Kerschner, C.; Kraus-Polk, A.; Kuokkanen, A.; Spangenberg, J.H. De-Coupling Debunked; European Environmental Bureau: Brussels, Belgium, 2019. [Google Scholar]
- Jackson, T. The post-growth challenge: Secular stagnation, inequality and the limits to growth. Ecol. Econ. 2019, 156, 236–246. [Google Scholar] [CrossRef]
- Alexander, S.; Yacoumis, P. Degrowth, energy descent, and ‘low-tech’ living: Potential pathways for increased resilience in times of crisis. J. Clean. Prod. 2018, 197, 1840–1848. [Google Scholar] [CrossRef]
- Kallis, G. Radical dematerialization and degrowth. Phil. Trans. Roy. Soc. A 2017, 375, 20160383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alexander, S.; Floyd, J. The political economy of deep decarbonization: Tradable Energy Quotas for energy descent futures. Energies 2020, 13, 4304. [Google Scholar] [CrossRef]
- Capellán-Pérez, I.; de Castro, C.; González, L.J.M. Dynamic Energy Return on Energy Investment (EROI) and material requirements in scenarios of global transition to renewable energies. Energy Strategy Rev. 2019, 26, 100399. [Google Scholar] [CrossRef]
- De Castro, C.; Mediavilla, M.; Miguel, L.J.; Frechoso, F. Global solar electric potential: A review of their technical and sustainable limits. Renew. Sustain. Energy Rev. 2013, 28, 824–835. [Google Scholar] [CrossRef]
- Moriarty, P.; Honnery, D. Three futures: Nightmare, diversion, vision. World Futures 2018, 74, 51–67. [Google Scholar] [CrossRef]
Country | Installed Capacity (MW) |
---|---|
US | 2555 |
Indonesia | 2131 |
Philippines | 1928 |
Turkey | 1505 |
NZ | 965 |
Mexico | 936 |
Kenya | 823 |
Italy | 800 |
Iceland | 753 |
Japan | 525 |
World | 13,931 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moriarty, P.; Honnery, D. Feasibility of a 100% Global Renewable Energy System. Energies 2020, 13, 5543. https://doi.org/10.3390/en13215543
Moriarty P, Honnery D. Feasibility of a 100% Global Renewable Energy System. Energies. 2020; 13(21):5543. https://doi.org/10.3390/en13215543
Chicago/Turabian StyleMoriarty, Patrick, and Damon Honnery. 2020. "Feasibility of a 100% Global Renewable Energy System" Energies 13, no. 21: 5543. https://doi.org/10.3390/en13215543
APA StyleMoriarty, P., & Honnery, D. (2020). Feasibility of a 100% Global Renewable Energy System. Energies, 13(21), 5543. https://doi.org/10.3390/en13215543