Where Renewable Energy Sources Funds are Invested? Spatial Analysis of Energy Production Potential and Public Support
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Renewable Energy Source (RES) Development Projects
2.1.2. Solar Energy Potential
2.1.3. Wind Energy Potential
2.1.4. Biomass Energy Potential
2.2. Methods
2.2.1. Agglomeration Method
2.2.2. K-Means Method
3. Results
3.1. Solar Energy Clusters
3.2. Wind Energy Clusters
3.3. Biomass Energy Clusters
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
References
- Economidou, M.; Todeschi, V.; Bertoldi, P.; D’Agostino, D.; Zangheri, P.; Castellazzi, L. Review of 50 years of EU energy efficiency policies for buildings. Energy Build. 2020, 225, 110322. [Google Scholar] [CrossRef]
- United Nations General Assembly. Rio Declaration on Environment and Development. Available online: https://www.un.org/en/development/desa/population/migration/generalassembly/docs/globalcompact/A_CONF.151_26_Vol.I_Declaration.pdf (accessed on 1 September 2020).
- European Council. Council Directive 93/76/EEC of 13 September 1993 to Limit Carbon Dioxide Emissions by Improving Energy Efficiency (SAVE). Available online: https://www.legislation.gov.uk/eudr/1993/76/pdfs/eudr_19930076_adopted_en.pdf (accessed on 1 September 2020).
- Mrówczyńska, M.; Skiba, M.; Bazan-Krzywoszańska, A.; Sztubecka, M. Household standards and socio-economic aspects as a factor determining energy consumption in the city. Appl. Energy 2020, 264, 114680. [Google Scholar] [CrossRef]
- Krstić-Furundžić, A.; Vujošević, M.; Petrovski, A. Energy and environmental performance of the office building facade scenarios. Energy 2019, 183, 437–447. [Google Scholar] [CrossRef]
- Furmankiewicz, M.; Knieć, W.; Atterton, J. Rural governance in the new EU member states: The experience of the Polish LEADER+ pilot programme (2004–2008). In Springer Geography; Springer: Berlin/Heidelberg, Germany, 2015; pp. 133–153. [Google Scholar]
- Ziolo, M.; Kluza, K.; Spoz, A. Impact of Sustainable Financial and Economic Development on Greenhouse Gas Emission in the Developed and Converging Economies. Energies 2019, 12, 4514. [Google Scholar] [CrossRef] [Green Version]
- Świąder, M.; Lin, D.; Szewrański, S.; Kazak, J.K.; Iha, K.; van Hoof, J.; Belčáková, I.; Altiok, S. The application of ecological footprint and biocapacity for environmental carrying capacity assessment: A new approach for European cities. Environ. Sci. Policy 2020, 105, 56–74. [Google Scholar] [CrossRef]
- Wohlgemuth, N.; Wojtkowska-Łodej, G. Policies for the promotion of renewable energy in Poland. Appl. Energy 2003, 76, 111–121. [Google Scholar] [CrossRef]
- Bazan-Krzywoszańska, A.; Skiba, M.; Mrówczyńska, M.; Sztubecka, M.; Bazuń, D.; Kwiatkowski, M. Green Energy in Municipal Planning Documents; EDP Sciences: Krakow, Poland, 2018; Volume 45, p. 00006. [Google Scholar]
- Anke, C.P.; Hobbie, H.; Schreiber, S.; Möst, D. Coal phase-outs and carbon prices: Interactions between EU emission trading and national carbon mitigation policies. Energy Policy 2020, 144, 111647. [Google Scholar] [CrossRef]
- Maes, D.; Van Passel, S. Interference of regional support policies on the economic and environmental performance of a hybrid cogeneration-solar panel energy system. Energy Policy 2012, 42, 670–680. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, X.; Feng, S. Does renewable energy policy work? Evidence from a panel data analysis. Renew. Energy 2019, 135, 635–642. [Google Scholar] [CrossRef]
- Dusonchet, L.; Telaretti, E. Economic analysis of different supporting policies for the production of electrical energy by solar photovoltaics in eastern European Union countries. Energy Policy 2010, 38, 4011–4020. [Google Scholar] [CrossRef]
- West, J.; Bailey, I.; Winter, M. Renewable energy policy and public perceptions of renewable energy: A cultural theory approach. Energy Policy 2010, 38, 5739–5748. [Google Scholar] [CrossRef]
- Pelau, C.; Pop, N. Al Implications for the energy policy derived from the relation between the cultural dimensions of Hofstede’s model and the consumption of renewable energies. Energy Policy 2018, 118, 160–168. [Google Scholar] [CrossRef]
- Urmee, T.; Md, A. Social, cultural and political dimensions of off-grid renewable energy programs in developing countries. Renew. Energy 2016, 93, 159–167. [Google Scholar] [CrossRef]
- Martí-Ballester, C.P. Do European renewable energy mutual funds foster the transition to a low-carbon economy? Renew. Energy 2019, 143, 1299–1309. [Google Scholar] [CrossRef]
- Kachniarz, M.; Szewranski, S.; Kazak, J. The Use of European Funds in Polish and Czech Municipalities. A Study of the Lower Silesia Voivodship and Hradec Kralove Region. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2019; Volume 471, p. 112047. [Google Scholar] [CrossRef]
- Štreimikiene, D. Review of financial support from EU Structural Funds to sustainable energy in Baltic States. Renew. Sustain. Energy Rev. 2016, 58, 1027–1038. [Google Scholar] [CrossRef]
- Boerenfijn, P.; Kazak, J.K.; Schellen, L.; van Hoof, J. A multi-case study of innovations in energy performance of social housing for older adults in the Netherlands. Energy Build. 2018, 158, 1762–1769. [Google Scholar] [CrossRef]
- Bazan-Krzywoszańska, A.; Mrówczyńska, M.; Skiba, M.; Łączak, A. Economic conditions for the development of energy efficient civil engineering using RES in the policy of cohesion of the European Union (2014–2020). Case study: The town of Zielona Gora. Energy Build. 2016, 118, 170–180. [Google Scholar] [CrossRef]
- Woch, F.; Hernik, J.; Linke, H.; Sankowski, E.; Bęczkowska, M.; Noszczyk, T. Renewable Energy and Rural Autonomy: A Case Study with Generalizations. Polish J. Environ. Stud. 2017, 26, 2823–2832. [Google Scholar] [CrossRef]
- Grešlová, P.; Štych, P.; Salata, T.; Hernik, J.; Knížková, I.; Bičík, I.; Jeleček, L.; Prus, B.; Noszczyk, T. Agroecosystem energy metabolism in Czechia and Poland in the two decades after the fall of communism: From a centrally planned system to market oriented mode of production. Land Use policy 2019, 82, 807–820. [Google Scholar] [CrossRef]
- Szewrański, S.; Bochenkiewicz, M.; Kachniarz, M.; Kazak, J.K.; Sylla, M.; Świąder, M.; Tokarczyk-Dorociak, K. Location support system for energy clusters management at regional level. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2019; Volume 354, p. 012021. [Google Scholar] [CrossRef]
- Derlukiewicz, N.; Mempel-Śnieżyk, A.; Mankowska, D.; Dyjakon, A.; Minta, S.; Pilawka, T. How do Clusters Foster Sustainable Development? An Analysis of EU Policies. Sustainability 2020, 12, 1297. [Google Scholar] [CrossRef] [Green Version]
- Klaniecki, K.; Duse, I.A.; Lutz, L.M.; Leventon, J.; Abson, D.J. Applying the energy cultures framework to understand energy systems in the context of rural sustainability transformation. Energy Policy 2020, 137, 111092. [Google Scholar] [CrossRef]
- Prabatha, T.; Hager, J.; Carneiro, B.; Hewage, K.; Sadiq, R. Analyzing energy options for small-scale off-grid communities: A Canadian case study. J. Clean. Prod. 2020, 249, 119320. [Google Scholar] [CrossRef]
- Aberilla, J.M.; Gallego-Schmid, A.; Stamford, L.; Azapagic, A. Design and environmental sustainability assessment of small-scale off-grid energy systems for remote rural communities. Appl. Energy 2020, 258, 114004. [Google Scholar] [CrossRef]
- Chodkowska-Miszczuk, J. Small-Scale Renewable Energy Systems in the Development of Distributed Generation in Poland. Morav. Geogr. Reports 2014, 22, 34–43. [Google Scholar] [CrossRef] [Green Version]
- Lakatos, E.; Arsenopoulos, A. Investigating EU financial instruments to tackle energy poverty in households: A SWOT analysis. Energy Sources Part B Econ. Plan. Policy 2019, 14, 235–253. [Google Scholar] [CrossRef]
- Streimikiene, D.; Lekavičius, V.; Baležentis, T.; Kyriakopoulos, G.L.; Abrhám, J. Climate Change Mitigation Policies Targeting Households and Addressing Energy Poverty in European Union. Energies 2020, 13, 3389. [Google Scholar] [CrossRef]
- Apostolopoulos, N.; Chalvatzis, K.J.; Liargovas, P.G.; Newbery, R.; Rokou, E. The role of the expert knowledge broker in rural development: Renewable energy funding decisions in Greece. J. Rural Stud. 2020, 78, 96–106. [Google Scholar] [CrossRef]
- Malinauskaite, J.; Jouhara, H.; Egilegor, B.; Al-Mansour, F.; Ahmad, L.; Pusnik, M. Energy efficiency in the industrial sector in the EU, Slovenia, and Spain. Energy 2020, 208, 118398. [Google Scholar] [CrossRef]
- Bostan, I.; Lazar, C.M.; Asalos, N.; Munteanu, I.; Horga, G.M. The three-dimensional impact of the absorption effects of European funds on the competitiveness of the SMEs from the Danube Delta. Ind. Crops Prod. 2019, 132, 460–467. [Google Scholar] [CrossRef]
- Carfora, A.; Romano, A.A.; Ronghi, M.; Scandurra, G. Renewable generation across Italian regions: Spillover effects and effectiveness of European Regional Fund. Energy Policy 2017, 102, 132–141. [Google Scholar] [CrossRef]
- Veum, K.; Bauknecht, D. How to reach the EU renewables target by 2030? An analysis of the governance framework. Energy Policy 2019, 127, 299–307. [Google Scholar] [CrossRef]
- Bobis, A.H.; Cooke, T.F.; Paden, J.H. A Funds Allocation Method to Improve the Odds for Research Successes. Res. Manag. 1971, 14, 34–49. [Google Scholar] [CrossRef]
- Zhu, D.; Song, D.; Shi, J.; Fang, J.; Zhou, Y. The Effect of Morphology on Solar Potential of High-Density Residential Area: A Case Study of Shanghai. Energies 2020, 13, 2215. [Google Scholar] [CrossRef]
- Kazak, J.K.; Świąder, M. SOLIS—A Novel Decision Support Tool for the Assessment of Solar Radiation in ArcGIS. Energies 2018, 11, 2105. [Google Scholar] [CrossRef] [Green Version]
- Besser, A.; Kazak, J.K.; Świąder, M.; Szewrański, S. A Customized Decision Support System for Renewable Energy Application by Housing Association. Sustainability 2019, 11, 4377. [Google Scholar] [CrossRef] [Green Version]
- Krishnamoorthy, R.; Udhayakumar, K.; Kannadasan, R.; Elavarasan, R.M.; Mihet-Popa, L. An Assessment of Onshore and Offshore Wind Energy Potential in India Using Moth Flame Optimization. Energies 2020, 13, 3063. [Google Scholar] [CrossRef]
- Negash, T.; Möllerström, E.; Ottermo, F. An Assessment of Wind Energy Potential for the Three Topographic Regions of Eritrea. Energies 2020, 13, 1846. [Google Scholar] [CrossRef]
- Korupczynski, R.; Trajer, J. Assessment of wind energy resources using artificial neural networks-Case study at Łódz Hills. Bull. Polish Acad. Sci. Tech. Sci. 2019, 67, 115–124. [Google Scholar] [CrossRef]
- Woch, F.; Hernik, J.; Sankowski, E.; Pióro, P.; Pazdan, M.; Noszczyk, T. Evaluating the potential use of forest biomass for renewable energy: A case study with elements of a systems approach. Polish J. Environ. Stud. 2020, 29, 885–891. [Google Scholar] [CrossRef]
- Szulczewski, W.; Żyromski, A.; Jakubowski, W.; Biniak-Pieróg, M. A new method for the estimation of biomass yield of giant miscanthus (Miscanthus giganteus) in the course of vegetation. Renew. Sustain. Energy Rev. 2018, 82, 1787–1795. [Google Scholar] [CrossRef]
- Pietrzykowski, M.; Woś, B.; Tylek, P.; Kwaśniewski, D.; Juliszewski, T.; Walczyk, J.; Likus-Cieślik, J.; Ochał, W.; Tabor, S. Carbon sink potential and allocation in above- and below-ground biomass in willow coppice. J. For. Res. 2020, 1, 3. [Google Scholar] [CrossRef]
- Ali, M.M.; Ndongo, M.; Bilal, B.; Yetilmezsoy, K.; Youm, I.; Bahramian, M. Mapping of biogas production potential from livestock manures and slaughterhouse waste: A case study for African countries. J. Clean. Prod. 2020, 256, 120499. [Google Scholar] [CrossRef]
- Lovrak, A.; Pukšec, T.; Duić, N. A Geographical Information System (GIS) based approach for assessing the spatial distribution and seasonal variation of biogas production potential from agricultural residues and municipal biowaste. Appl. Energy 2020, 267, 115010. [Google Scholar] [CrossRef]
- Białowiec, A.; Bieniek, J.; Koziołek, S.; Dębska, A. Potencjał produkcji biogazu z odpadów we wrocławskim Ogrodzie Zoologicznym (The biogas production potential from Wrocław Zoological Garden). Rocz. Ochr. Środowiska Annual Set Environ. Prot. 2016, 18, 337–351. [Google Scholar]
- Nachtane, M.; Tarfaoui, M.; Hilmi, K.; Saifaoui, D.; El Moumen, A. Assessment of Energy Production Potential from Tidal Stream Currents in Morocco. Energies 2018, 11, 1065. [Google Scholar] [CrossRef] [Green Version]
- Shadman, M.; Silva, C.; Faller, D.; Wu, Z.; de Freitas Assad, L.; Landau, L.; Levi, C.; Estefen, S. Ocean Renewable Energy Potential, Technology, and Deployments: A Case Study of Brazil. Energies 2019, 12, 3658. [Google Scholar] [CrossRef] [Green Version]
- Bilić, T.; Raos, S.; Ilak, P.; Rajšl, I.; Pašičko, R. Assessment of Geothermal Fields in the South Pannonian Basin System Using a Multi-Criteria Decision-Making Tool. Energies 2020, 13, 1026. [Google Scholar] [CrossRef] [Green Version]
- Chodkowska-Miszczuk, J.; Szymańska, D. Current state and perspectives for oilseed rape production for energy purposes in Poland. Energy Sources Part A Recover. Util. Environ. Eff. 2016, 38, 117–123. [Google Scholar] [CrossRef]
- Oikonomou, V.; Flamos, A.; Grafakos, S. Combination of energy policy instruments: Creation of added value or overlapping? Energy Sources Part B Econ. Plan. Policy 2014, 9, 46–56. [Google Scholar] [CrossRef]
- Oikonomou, V.; Flamos, A.; Zeugolis, D.; Grafakos, S. A qualitative assessment of EU energy policy interactions. Energy Sources Part B Econ. Plan. Policy 2012, 7, 177–187. [Google Scholar] [CrossRef]
- Mapa Dotacji UE. Available online: https://mapadotacji.gov.pl/ (accessed on 5 August 2020).
- Head Office of Geodesy and Cartography Dane z Państwowego Rejestru Granic i Powierzchni Jednostek Podziałów Terytorialnych Kraju—PRG. Available online: http://www.gugik.gov.pl/pzgik/dane-bez-oplat/dane-z-panstwowego-rejestru-granic-i-powierzchni-jednostek-podzialow-terytorialnych-kraju-prg (accessed on 4 January 2020).
- World Bank Group Global Solar Atlas. Available online: https://globalsolaratlas.info/map (accessed on 4 January 2020).
- World Bank Group Global Wind Atlas. Available online: https://globalwindatlas.info/ (accessed on 4 January 2020).
- BioBoost. Available online: http://bioboost.eu/home.php (accessed on 5 August 2020).
- Hamelin, L.; Borzęcka, M.; Kozak, M.; Pudełko, R. A spatial approach to bioeconomy: Quantifying the residual biomass potential in the EU-27. Renew. Sustain. Energy Rev. 2019, 100, 127–142. [Google Scholar] [CrossRef]
- Ward, J.H. Hierarchical Grouping to Optimize an Objective Function. J. Am. Stat. Assoc. 1963, 58, 236–244. [Google Scholar] [CrossRef]
- Macqueen, J. Some Methods for Classification and Analysis of Multivariate Observations; The Regents of the University of California: Los Angeles, CA, USA, 1967. [Google Scholar]
- TIBCO Software Inc. Data Science Textbook; Available online: https://www.tibco.com/products/data-science (accessed on 1 September 2020).
- Forgy, E.W. Cluster analysis of multivariate data: Efficiency versus interpretability of classifications. Biometrics 1965, 21, 768–769. [Google Scholar]
- Furmankiewicz, M.; Janc, K.; Kazak, J.K.; Hewitt, R.J. Europeanisation of energy policy and area-based partnerships: Regional diversity of interest in renewable energy sources in local development strategies in Poland. Proc. IOP Conf. Ser. Earth Environ. Sci. 2020, in press. Available online: https://iopscience.iop.org/journal/1755-1315 (accessed on 1 September 2020).
- Dranka, G.G.; Ferreira, P.; Vaz, A.I.F. Cost-effectiveness of energy efficiency investments for high renewable electricity systems. Energy 2020, 198, 117198. [Google Scholar] [CrossRef]
- Kisiała, W.; Bajerski, A.; Stępiński, B. Preferences of Poles concerning the shape of regional policy and the allocation of European funds. Transylvanian Rev. Adm. Sci. 2018, 14, 55–72. [Google Scholar] [CrossRef]
- Harper, M.; Anderson, B.; James, P.; Bahaj, A.B. Assessing socially acceptable locations for onshore wind energy using a GIS-MCDA approach. Int. J. Low Carbon Technol. 2019, 14, 160–169. [Google Scholar] [CrossRef]
- Martinez, N.; Komendantova, N. The effectiveness of the social impact assessment (SIA) in energy transition management: Stakeholders’ insights from renewable energy projects in Mexico. Energy Policy 2020, 145, 111744. [Google Scholar] [CrossRef]
- Brown, G.; Glanz, H. Identifying potential NIMBY and YIMBY effects in general land use planning and zoning. Appl. Geogr. 2018, 99, 1–11. [Google Scholar] [CrossRef]
- Boyle, K.J.; Boatwright, J.; Brahma, S.; Xu, W. NIMBY, not, in siting community wind farms. Resour. Energy Econ. 2019, 57, 85–100. [Google Scholar] [CrossRef]
- Bersalli, G.; Menanteau, P.; El-Methni, J. Renewable energy policy effectiveness: A panel data analysis across Europe and Latin America. Renew. Sustain. Energy Rev. 2020, 133, 110351. [Google Scholar] [CrossRef]
- Liu, D.; Liu, M.; Xu, E.; Pang, B.; Guo, X.; Xiao, B.; Niu, D. Comprehensive effectiveness assessment of renewable energy generation policy: A partial equilibrium analysis in China. Energy Policy 2018, 115, 330–341. [Google Scholar] [CrossRef]
- Tröndle, T.; Lilliestam, J.; Marelli, S.; Pfenninger, S. Trade-Offs between Geographic Scale, Cost, and Infrastructure Requirements for Fully Renewable Electricity in Europe. Joule 2020, 4, 1929–1948. [Google Scholar] [CrossRef] [PubMed]
- Oliver, M.E. Economies of scale and scope in expansion of the U.S. natural gas pipeline network. Energy Econ. 2015, 52, 265–276. [Google Scholar] [CrossRef]
- Alaeifar, M.; Farsi, M.; Filippini, M. Scale economies and optimal size in the Swiss gas distribution sector. Energy Policy 2014, 65, 86–93. [Google Scholar] [CrossRef]
- Al-Mutairi, N.; Burney, N.A. Factor substitution, and economies of scale and utilisation in Kuwait’s crude oil industry. Energy Econ. 2002, 24, 337–354. [Google Scholar] [CrossRef]
- Arcos, A.; de Toledo, P.A. An analysis of the Spanish electrical utility industry: Economies of scale, technological progress and efficiency. Energy Econ. 2009, 31, 473–481. [Google Scholar] [CrossRef]
- Machado, M.M.; de Sousa, M.C.S.; Hewings, G. Economies of scale and technological progress in electric power production: The case of Brazilian utilities. Energy Econ. 2016, 59, 290–299. [Google Scholar] [CrossRef]
- Skovsgaard, L.; Jacobsen, H.K. Economies of scale in biogas production and the significance of flexible regulation. Energy Policy 2017, 101, 77–89. [Google Scholar] [CrossRef] [Green Version]
- Farrell, J. Report: Is Bigger Best in Renewable Energy?—Institute for Local Self-Reliance. Available online: https://ilsr.org/report-is-bigger-best/ (accessed on 12 October 2020).
- Varlas, G.; Christakos, K.; Cheliotis, I.; Papadopoulos, A.; Steeneveld, G.J. Spatiotemporal variability of marine renewable energy resources in Norway. In Proceedings of the Energy Procedia; Elsevier: Amsterdam, The Netherlands, 2017; Volume 125, pp. 180–189. [Google Scholar]
- Spittler, N.; Davidsdottir, B.; Shafiei, E.; Leaver, J.; Asgeirsson, E.I.; Stefansson, H. The role of geothermal resources in sustainable power system planning in Iceland. Renew. Energy 2020, 153, 1081–1090. [Google Scholar] [CrossRef]
- Mir-Artigues, P.; Cerdá, E.; del Río, P. Analysing the economic impact of the new renewable electricity support scheme on solar PV plants in Spain. Energy Policy 2018, 114, 323–331. [Google Scholar] [CrossRef] [Green Version]
- Harper, M.; Anderson, B.; James, P.A.B.; Bahaj, A.B.S. Onshore wind and the likelihood of planning acceptance: Learning from a Great Britain context. Energy Policy 2019, 128, 954–966. [Google Scholar] [CrossRef]
- Chodkowska-Miszczuk, J.; Biegańska, J.; Środa-Murawska, S.; Grzelak-Kostulska, E.; Rogatka, K. European Union funds in the development of renewable energy sources in Poland in the context of the cohesion policy. Energy Environ. 2016, 27, 713–725. [Google Scholar] [CrossRef]
- European Commission. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions: The European Green Deal; European Commission: Brussels, Belgium, 2019. [Google Scholar]
Variable | N | Mean | Median | Mode | M.C. | Min | Max | Q1 | Q3 | Stand. Dev. | Skewness |
---|---|---|---|---|---|---|---|---|---|---|---|
Solar energy | * | ||||||||||
Number of projects | 153 | 3 | 2 | 1 | 60 | 1 | 27 | 1 | 4 | 3.9 | 3.51 |
Project costs | 153 | 11,167,378 | 6,976,243 | * | 145,336 | 48,621,790 | 3,456,062 | 15,705,374 | 10,843,204 | 1.48 | |
EU funds | 153 | 5,415,878 | 3,530,248 | * | 68,568 | 26,038,312 | 1,826,515 | 7,671,189 | 5,123,470 | 1.51 | |
Potential | 380 | 8 | 9 | * | 2.8 | 18 | 6 | 11 | 3.3 | 0.20 | |
Wind energy | |||||||||||
Number of projects | 88 | 2 | 2 | 1 | 34 | 1 | 10 | 1 | 3 | 2.1 | 1.94 |
Project costs | 88 | 112,926,948 | 53,929,947 | 22,975,875 | 2 | 90,493 | 564,970,255 | 16,161,395 | 186,206,876 | 129,585,128 | 1.58 |
EU funds | 88 | 30,213,824 | 21,138,621 | * | 2 | 63,345 | 119,773,639 | 6,341,924 | 41,595,585 | 28,371,280 | 1.18 |
Potential | 380 | 378.1 | 376.3 | * | 95.6 | 848.2 | 258.1 | 487.2 | 159.6 | 0.32 | |
Biomass energy | |||||||||||
Number of projects | 122 | 2 | 1 | 1 | 75 | 1 | 6 | 1 | 2 | 1.0 | 1.81 |
Project costs | 122 | 16,951,413 | 4,015,233 | * | 7420 | 282,470,580 | 1,045,893 | 10,913,450 | 42,187,295 | 4.68 | |
EU funds | 122 | 5,691,175 | 2,738,784 | * | 2597 | 57,828,660 | 415,539 | 6,840,238 | 8,730,315 | 3.20 | |
Potential | 380 | 0.117 | 0.100 | * | 0.04 | 0.50 | 0.087 | 0.128 | 0.059 | 3.32 |
N | Project Cost [mln zł] | Solar Potential | |||||||
---|---|---|---|---|---|---|---|---|---|
Min | Me | Max | s | Min | Me | Max | s | ||
1 | 29 | 18.0 | 25.2 | 48.6 | 9.2 | 5.6 | 8.8 | 14.7 | 2.8 |
2 | 75 | 0.2 | 5.4 | 19.4 | 5.0 | 8.2 | 8.9 | 17.9 | 2.3 |
3 | 49 | 0.1 | 5.9 | 21.0 | 5.5 | 2.78 | 5.64 | 5.99 | 1.3 |
4 | 227 | 0 | 0 | 0 | 0 | 2.8 | 8.6 | 17.5 | 3.3 |
N | Project Cost [mln zł] | Wind Potential | |||||||
---|---|---|---|---|---|---|---|---|---|
Min | Me | Max | s | Min | Me | Max | s | ||
1 | 21 | 0.5 | 18.3 | 276.1 | 67.1 | 480 | 579 | 826 | 98 |
2 | 45 | 0.09 | 44.3 | 167.8 | 46.3 | 131 | 369 | 462 | 86 |
3 | 22 | 184.3 | 262.4 | 565.0 | 113.6 | 135 | 424 | 558 | 105 |
4 | 292 | 0 | 0 | 0 | 0 | 96 | 354 | 848 | 164 |
N | Project Cost [mln zł] | Biomass Potential | |||||||
Min | Me | Max | s | Min | Me | Max | s | ||
1 | 3 | 58.1 | 78.9 | 163.1 | 55.6 | 0.37 | 0.37 | 0.43 | 0.03 |
2 | 116 | 0.007 | 3.7 | 87.4 | 15.5 | 0.05 | 0.09 | 0.17 | 0.03 |
3 | 3 | 151.7 | 235.4 | 282.5 | 72.7 | 0.09 | 0.10 | 0.16 | 0.04 |
4 | 258 | 0 | 0 | 0 | 0 | 0.05 | 0.10 | 0.50 | 0.06 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kazak, J.K.; Kamińska, J.A.; Madej, R.; Bochenkiewicz, M. Where Renewable Energy Sources Funds are Invested? Spatial Analysis of Energy Production Potential and Public Support. Energies 2020, 13, 5551. https://doi.org/10.3390/en13215551
Kazak JK, Kamińska JA, Madej R, Bochenkiewicz M. Where Renewable Energy Sources Funds are Invested? Spatial Analysis of Energy Production Potential and Public Support. Energies. 2020; 13(21):5551. https://doi.org/10.3390/en13215551
Chicago/Turabian StyleKazak, Jan K., Joanna A. Kamińska, Rafał Madej, and Marta Bochenkiewicz. 2020. "Where Renewable Energy Sources Funds are Invested? Spatial Analysis of Energy Production Potential and Public Support" Energies 13, no. 21: 5551. https://doi.org/10.3390/en13215551
APA StyleKazak, J. K., Kamińska, J. A., Madej, R., & Bochenkiewicz, M. (2020). Where Renewable Energy Sources Funds are Invested? Spatial Analysis of Energy Production Potential and Public Support. Energies, 13(21), 5551. https://doi.org/10.3390/en13215551