Application of Industry 4.0 to the Product Development Process in Project-Type Production
Abstract
:1. Introduction
1.1. The Industry 4.0 Framework
1.2. Product Development Process
2. Research Methods
2.1. Employed Methods
2.2. Studied PDP
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Dalenogare, L.S.; Benitez, G.B.; Ayala, N.F.; Frank, A.G. The expected contribution of Industry 4.0 technologies for industrial performance. Int. J. Prod. Econ. 2018, 204, 383–394. [Google Scholar] [CrossRef]
- Kagermann, H.; Helbig, J.; Hellinger, A.; Wahlster, W. Recommendations for Implementing the Strategic Initiative INDUSTRIE 4.0: Securing the Future of German Manufacturing Industry; Final Report of the Industrie 4.0 Working Group; Forschungsunion: Frankfurt/Main, Germany, 2013. [Google Scholar]
- Liao, Y.; Deschamps, F.; de Freitas Rocha Loures, E.; Ramos, L.F.P. Past, present and future of Industry 4.0—A systematic literature review and research agenda proposal. Int. J. Prod. Res. 2017, 55, 3609–3629. [Google Scholar] [CrossRef]
- Schwab, K. The Fourth Industrial Revolution; Crown Publishing Group: New York, NY, USA, 2017. [Google Scholar]
- Ferrero, R.; Collotta, M.; Bueno-Delgado, M.V.; Chen, H.C. Smart Management Energy Systems in Industry 4.0. Energies 2020, 13, 382. [Google Scholar] [CrossRef] [Green Version]
- Vrchota, J.; Pech, M. Readiness of Enterprises in Czech Republic to Implement Industry 4.0: Index of Industry 4.0. Appl. Sci. 2020, 9, 5405. [Google Scholar] [CrossRef] [Green Version]
- Da Silva, F.S.T.; da Costa, C.A.; Crovato, C.D.P.; Righi, R. Looking at energy through the lens of Industry 4.0: A systematic literature review of concerns and challenges. Comput. Ind. Eng. 2020, 143, 106426. [Google Scholar] [CrossRef]
- Bagheri, B.; Yang, S.; Kao, H.-A.; Lee, J. Cyber-physical Systems Architecture for Self-Aware Machines in Industry 4.0 Environment. IFAC-Pap. 2015, 48, 1622–1627. [Google Scholar] [CrossRef]
- Garetti, M.; Fumagalli, L.; Negri, E. Role of ontologies for CPS implementation in manufacturing. Manag. Prod. Eng. Rev. 2015, 6, 26–32. [Google Scholar] [CrossRef] [Green Version]
- Jeschke, S.; Brecher, C.; Meisen, T.; Özdemir, D.; Eschert, T. Industrial Internet of Things and Cyber Manufacturing Systems. In Industrial Internet of Things; Jeschke, S., Brecher, C., Song, H., Rawat, D., Eds.; Springer: Cham, Switzerland, 2017; pp. 3–19. [Google Scholar] [CrossRef]
- Pereira, A.C.; Romero, F. A review of the meanings and the implications of the Industry 4.0 concept. Procedia Manuf. 2017, 13, 1206–1214. [Google Scholar] [CrossRef]
- Qin, J.; Liu, Y.; Grosvenor, R. A Categorical Framework of Manufacturing for Industry 4.0 and Beyond. Procedia CIRP 2016, 52, 173–178. [Google Scholar] [CrossRef] [Green Version]
- Vaidya, S.; Ambad, P.; Bhosle, S. Industry 4.0—A glimpse. Procedia Manuf. 2018, 20, 233–238. [Google Scholar] [CrossRef]
- Tao, F.; Cheng, J.; Qi, Q.; Zhang, M.; Zhang, H.; Sui, F. Digital twin-driven product design, manufacturing and service with big data. Int. J. Adv. Manuf. Technol. 2018, 94, 3563–3576. [Google Scholar] [CrossRef]
- Kozik, P.; Sęp, J. Aircraft Engine Overhaul Demand Forecasting using ANN. Manag. Prod. Eng. Rev. 2012, 3, 21–26. [Google Scholar] [CrossRef]
- Cuk, E.; Chaparro, V. Methodology for optimizing manufacturing machines with IoT. In Proceedings of the 2018 IEEE International Conference on Internet of Things and Intelligence System (IOTAIS), Bali, Indonesia, 1–3 November 2018; pp. 90–96. [Google Scholar] [CrossRef]
- Neugebauer, R.; Hippmann, S.; Leis, M.; Landherr, M. Industrie 4.0—From the Perspective of Applied Research. Procedia CIRP 2016, 57, 2–7. [Google Scholar] [CrossRef]
- Dremel, C.; Wulf, J.; Herterich, M.M.; Waizmann, J.C.; Brenner, W. How AUDI AG Established Big Data Analytics in Its Digital Transformation. MIS Q. Exec. 2017, 16, 81–100. [Google Scholar]
- Lee, J.; Kao, H.-A.; Yang, S. Service innovation and smart analytics for Industry 4.0 and big data environment. Procedia CIRP 2014, 16, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Fisher, O.; Watson, N.; Porcu, L.; Bacon, D.; Rigley, M.; Gomes, R.L. Cloud manufacturing as a sustainable process manufacturing route. J. Manuf. Syst. 2018, 47, 53–68. [Google Scholar] [CrossRef]
- Gao, R.; Wang, L.; Teti, R.; Dornfeld, D.; Kumara, S.; Mori, M.; Helu, M. Cloud-enabled prognosis for manufacturing. CIRP Ann. Manuf. Technol. 2015, 64. [Google Scholar] [CrossRef] [Green Version]
- Lu, Y.; Xu, X. Cloud-based manufacturing equipment and big data analytics to enable on-demand manufacturing services. Robot. Comput. Integr. Manuf. 2019, 57, 92–102. [Google Scholar] [CrossRef]
- Wang, X.V.; Xu, X.W. An interoperable solution for Cloud manufacturing. Robot. Comput. Integr. Manuf. 2013, 29, 232–247. [Google Scholar] [CrossRef]
- Chen, B.; Wan, J.; Shu, L.; Li, P.; Mukherjee, M.; Yin, B. Smart Factory of Industry 4.0: Key Technologies, Application Case, and Challenges. IEEE Access 2018, 6, 6505–6519. [Google Scholar] [CrossRef]
- Schermuly, L.; Schreieck, M.; Wiesche, M.; Krcmar, H. Developing an industrial IoT platform–Trade-off between horizontal and vertical approaches. In Proceedings of the 14th International Conference on Wirtschaftsinformatik, Siegen, Germany, 24–27 February 2019; pp. 32–46. [Google Scholar]
- Bragança, S.; Costa, E.; Castellucci, I.; Arezes, P.M. A Brief Overview of the Use of Collaborative Robots in Industry 4.0: Human Role and Safety. In Occupational and Environmental Safety and Health; Arezes, P., Baptista, J.S., Barroso, M.P., Carneiro, P., Cordeiro, P., Costa, N., Melo, R.B., Miguel, A.S., Perestrelo, G., Eds.; Springer: Cham, Switzerland, 2019; Volume 202, pp. 641–650. [Google Scholar] [CrossRef]
- Gonzalez, A.G.C.; Alves, M.V.S.; Viana, G.S.; Carvalho, L.K.; Basilio, J.C. Supervisory Control-Based Navigation Architecture: A New Framework for Autonomous Robots in Industry 4.0 Environments. IEEE Trans. Ind. Inform. 2018, 14, 1732–1743. [Google Scholar] [CrossRef]
- Indri, M.; Grau, A.; Ruderman, M. Guest Editorial Special Section on Recent Trends and Developments in Industry 4.0 Motivated Robotic Solutions. IEEE Trans. Ind. Inform. 2018, 14, 1677–1680. [Google Scholar] [CrossRef] [Green Version]
- Antonelli, D.; Stadnicka, D. Combining factory simulation with value stream mapping: A critical discussion. Procedia CIRP 2018, 67, 30–35. [Google Scholar] [CrossRef]
- Ullah, A.M.M.S. Modeling and simulation of complex manufacturing phenomena using sensor signals from the perspective of Industry 4.0. Adv. Eng. Inform. 2019, 39, 1–13. [Google Scholar] [CrossRef]
- Phillips, F.; Chang, J.; Su, Y. When do efficiency and flexibility determine a firm’s performance? A simulation study. J. Innov. Knowl. 2019, 4, 88–96. [Google Scholar] [CrossRef]
- Kusiak, A. Smart manufacturing. Int. J. Prod. Res. 2018, 56, 508–517. [Google Scholar] [CrossRef]
- Tofail, S.A.M.; Koumoulos, E.P.; Bandyopadhyay, A.; Bose, S.; O’Donoghue, L.; Charitidis, C. Additive manufacturing: Scientific and technological challenges, market uptake and opportunities. Mater. Today 2018, 21, 22–37. [Google Scholar] [CrossRef]
- Raza, A.; Haouari, L.; Pero, M.; Absi, N. Impacts of Industry 4.0 on the Specific Case of Mass Customization Through Modeling and Simulation Approach. In Customization 4.0. Springer Proceedings in Business and Economics; Hankammer, S., Nielsen, K., Piller, F., Schuh, G., Wang, N., Eds.; Springer: Cham, Switzerland, 2018; pp. 217–234. [Google Scholar] [CrossRef]
- Weyer, S.; Schmitt, M.; Ohmer, M.; Goreck, D. Towards Industry 4.0—Standardization as the crucial challenge for highly modular, multi-vendor production systems. IFAC-Pap. 2015, 48, 579–584. [Google Scholar] [CrossRef]
- Fraga-Lamas, P.; Fernández-Caramés, T.M.; Blanco-Novoa, Ó.; Vilar-Montesinos, M.A. A Review on Industrial Augmented Reality Systems for the Industry 4.0 Shipyard. IEEE Access 2018, 6, 13358–13375. [Google Scholar] [CrossRef]
- Masood, T.; Egger, J. Augmented reality in support of Industry 4.0—Implementation challenges and success factors. Robot. Comput. Integr. Manuf. 2019, 58, 181–195. [Google Scholar] [CrossRef]
- Stadnicka, D.; Antonelli, D. Implementation of augmented reality in welding processes. Technol. I Autom. Montażu 2014, 4, 56–60. [Google Scholar]
- Wolniak, R.; Saniuk, S.; Grabowska, S.; Gajdzik, B. Identification of Energy Efficiency Trends in the Context of the Development of Industry 4.0 Using the Polish Steel Sector as an Example. Energies 2020, 13, 2867. [Google Scholar] [CrossRef]
- Helo, P.; Hao, Y. Cloud manufacturing system for sheet metal processing. Prod. Plan. Control 2017, 28, 524–537. [Google Scholar] [CrossRef]
- Roblek, V.; Meško, M.; Krapež, A. A Complex View of Industry 4.0. SAGE Open 2016, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Szulewski, P. Koncepcje automatyki przemysłowej w środowisku Industry 4.0. Mechanik 2016, 7, 574–578. [Google Scholar] [CrossRef]
- Bonilla, S.H.; Silva, H.R.O.; Terra da Silva, M.; Franco Gonçalves, R.; Sacomano, J.B. Industry 4.0 and Sustainability Implications: A Scenario-Based Analysis of the Impacts and Challenges. Sustainability 2018, 10, 3740. [Google Scholar] [CrossRef] [Green Version]
- Nagy, J.; Oláh, J.; Erdei, E.; Máté, D.; Popp, J. The Role and Impact of Industry 4.0 and the Internet of Things on the Business Strategy of the Value Chain—The Case of Hungary. Sustainability 2018, 10, 3491. [Google Scholar] [CrossRef] [Green Version]
- Hermann, M.; Pentek, T.; Otto, B. Design Principles for Industrie 4.0 Scenarios. In Proceedings of the 49th Hawaii International Conference on System Sciences (HICSS), Koloa, HI, USA, 5–8 January 2015; pp. 3928–3937. [Google Scholar] [CrossRef] [Green Version]
- Olah, J.; Aburumman, N.; Popp, J.; Khan, M.A.; Haddad, H.; Kitukutha, N. Impact of Industry 4.0 on Environmental Sustainability. Sustainability 2020, 12, 4674. [Google Scholar] [CrossRef]
- Abubakar, A.M.; Elrehail, H.; Alatailat, M.A.; Elçi, A. Knowledge management, decision-making style and organizational performance. J. Innov. Knowl. 2019, 4, 104–114. [Google Scholar] [CrossRef]
- Industry 4.0: The fourth industrial revolution—Guide to Industrie 4.0. Available online: https://www.i-scoop.eu/industry-4-0/ (accessed on 31 August 2020).
- Rajapathirana, R.P.J.; Hui, Y. Relationship between innovation capability, innovation type, and firm performance. J. Innov. Knowl. 2018, 3, 44–55. [Google Scholar] [CrossRef]
- Imran, M.; Hameed, W.; Haque, A. Influence of Industry 4.0 on the Production and Service Sectors in Pakistan: Evidence from Textile and Logistics Industries. Soc. Sci. 2018, 7, 246. [Google Scholar] [CrossRef] [Green Version]
- Sevinc, A.; Gür, S.; Eren, T. Analysis of the Difficulties of SMEs in Industry 4.0 Applications by Analytical Hierarchy Process and Analytical Network Process. Processes 2018, 6, 264. [Google Scholar] [CrossRef] [Green Version]
- McWilliams, A.; Parhankangas, A.; Coupet, J.; Welch, E.; Barnum, D.T. Strategic decision making for the triple bottom line. Bus. Strategy Environ. 2016, 25, 193–204. [Google Scholar] [CrossRef]
- Short, M.; Rodriguez, S.; Charlesworth, R.; Crosbie, T.; Dawood, N. Optimal dispatch of aggregated HVAC units for demand response: An Industry 4.0 approach. Energies 2019, 12, 4320. [Google Scholar] [CrossRef] [Green Version]
- Faheem, M.; Butt, R.A.; Raza, B.; Ashraf, M.W.; Begum, S.; Ngadi, M.A.; Gungor, V.C. Bio-inspired routing protocol for WSN-based smart grid applications in the context of Industry 4.0. Trans. Emerg. Telecommun. Technol. 2018, 68, 910–922. [Google Scholar] [CrossRef]
- Huh, J.-H.; Lee, H.-G. Simulation and Test Bed of a Low-Power Digital Excitation System for Industry 4.0. Processes 2018, 6, 145. [Google Scholar] [CrossRef] [Green Version]
- Ursic, D.E. Morphogenesis of Industrial Symbiotic Networks; Peter Lang: Berlin, Germany, 2020. [Google Scholar] [CrossRef]
- Mileva Boshkoska, B.; Roncevic, B.; Ursic, D.E. Modeling and evaluation of the possibilities of forming a regional industrial symbiosis networks. Soc. Sci. 2018, 7, 13. [Google Scholar] [CrossRef] [Green Version]
- Rocca, R.; Rosa, P.; Sassanelli, C.; Fumagalli, L.; Terzi, S. Integrating Virtual Reality and Digital Twin in Circular Economy Practices: A Laboratory Application Case. Sustainability 2020, 12, 2286. [Google Scholar] [CrossRef] [Green Version]
- Brozzi, R.; Forti, D.; Rauch, E.; Matt, D.T. The Advantages of Industry 4.0 Applications for Sustainability: Results from a Sample of Manufacturing Companies. Sustainability 2020, 12, 3647. [Google Scholar] [CrossRef]
- de Sousa Jabbour, A.B.L.; Jabbour, C.J.C.; Foropon, C.; Godinho Filho, M. When titans meet–Can industry 4.0 revolutionise the environmentally-sustainable manufacturing wave? The role of critical success factors. Technol. Forecast. Soc. Chang. 2018, 132, 18–25. [Google Scholar] [CrossRef]
- Ding, K.; Jiang, P.; Zheng, M. Environmental and economic sustainability-aware resource service scheduling for industrial product service systems. J. Intell. Manuf. 2017, 28, 1303–1316. [Google Scholar] [CrossRef]
- Fysikopoulos, A.; Pastras, G.; Alexopoulos, T.; Chryssolouris, G. On a generalized approach to manufacturing energy efficiency. Int. J. Adv. Manuf. Technol. 2014, 73, 1437–1452. [Google Scholar] [CrossRef] [Green Version]
- Franco, M.; Pinho, C. A case study about cooperation between University Research Centres: Knowledge transfer perspective. J. Innov. Knowl. 2019, 4, 62–69. [Google Scholar] [CrossRef]
- Rossetti, G.H.; Giraudo, F.; Murer, P.; Arcusin, L. Comparative Analysis of Product Development Process Management Models. Am. J. Ind. Eng. 2014, 2, 5–9. [Google Scholar] [CrossRef]
- Magnusson, P.R. Exploring the contributions of involving ordinary users in ideation of technology-based services. J. Prod. Innov. Manag. 2009, 26, 578–593. [Google Scholar] [CrossRef] [Green Version]
- Sukhov, A.; Magnusson, P.R.; Netz, J. What is an Idea for Innovation? Serv. Innov. Sustain. Bus. 2019, 29–47. [Google Scholar] [CrossRef]
- Roozenburg, N.; Eekels, J. Product Design. Fundamentals and Methods; John Wiley & Sons: New York, NY, USA, 1995. [Google Scholar]
- Cooper, R.G. Stage-gate systems: A new tool for managing new products. Bus. Horiz. 1990, 33, 44–54. [Google Scholar] [CrossRef]
- Cooper, R.G. What’s Next? After Stage-Gate. Res. Technol. Manag. 2014, 57, 20–31. [Google Scholar] [CrossRef]
- Amaral, D.; Rozenfeld, H.; de Araujob, C. A case study about the product development process evaluation. In Complex Systems Concurrent Engineering; Loureiro, G., Curran, R., Eds.; Springer: London, UK, 2007; pp. 211–218. [Google Scholar] [CrossRef]
- Santos, K.; Loures, E.; Piechnicki, F.; Canciglieri, O. Opportunities Assessment of Product Development Process in Industry 4.0. Procedia Manuf. 2017, 11, 1358–1365. [Google Scholar] [CrossRef]
- Lercher, H. Big Picture Das Grazer Innovationsmodell (Big Picture the Innovation Model); Anzeigen und Marketing Kleine Zeitung GmbH & Co KG Verlagsort: Graz, Austria, 2019; Available online: https://ssrn.com/abstract=2929258 (accessed on 24 March 2020).
- Aristodemou, L.; Tietze, F.; O’Leary, E.; Shaw, M. A Literature Review on Technology Development Process (TDP) Models. In Centre for Technology Management Working Paper Series; Cambridge University Press: Cambridge, UK, 2019; pp. 1–31. [Google Scholar] [CrossRef]
- Milewski, S.K.; Fernandes, K.J.; Mount, M.P. Exploring technological process innovation from a lifecycle perspective. Int. J. Oper. Prod. Manag. 2015, 35, 1312–1331. [Google Scholar] [CrossRef] [Green Version]
- Berg, L.; Vance, J. Industry use of virtual reality in product design and manufacturing: A survey. Virtual Real. 2017, 21, 1–17. [Google Scholar] [CrossRef]
- Lorenz, M.; Spranger, M.; Riedel, T.; Pürzel, F.; Wittstock, V.; Klimant, P. CAD to VR—A Methodology for the Automated Conversion of Kinematic CAD Models to Virtual Reality. Procedia CIRP 2016, 41, 358–363. [Google Scholar] [CrossRef] [Green Version]
- Wolfartsberger, J.; Zenisek, J.; Sievi, C. Chances and Limitations of a Virtual Reality-supported Tool for Decision Making in Industrial Engineering. IFAC-Pap. 2018, 51, 637–642. [Google Scholar] [CrossRef]
- Feeman, S.M.; Wright, L.B.; Salmon, J.L. Exploration and evaluation of CAD modeling in virtual reality. Comput. -Aided Des. Appl. 2018, 15, 892–904. [Google Scholar] [CrossRef] [Green Version]
- Bickel, S.; Spruegel, T.C.; Schleich, B.; Wartzack, S. How Do Digital Engineering and Included AI Based Assistance Tools Change the Product Development Process and the Involved Engineers. In Proceedings of the 22nd International Conference on Engineering Design (ICED19), Delft, The Netherlands, 5–8 August 2019. [Google Scholar] [CrossRef] [Green Version]
- O’Driscoll, E.; Kelly, K.; O’Donnell, G.E. Intelligent energy based status identification as a platform for improvement of machine tool efficiency and effectiveness. J. Clean. Prod. 2015, 105, 184–195. [Google Scholar] [CrossRef]
- Schuh, G.; Doelle, C.; Mattern, C.; Modler, M.C. Studying Technologies of Industry 4.0 with Influence on Product Development using Factor Analysis. In Proceedings of the DS 91: Proceedings of NordDesign 2018, Linköping, Sweden, 14–17 August 2018; pp. 1–12. [Google Scholar]
- Klippert, M.; Marthaler, F.; Spadinger, M.; Albers, A. Industrie 4.0—An empirical and literature-based study how product development is influenced by the digital transformation. Procedia CIRP 2020, 91, 80–86. [Google Scholar] [CrossRef]
- Aguilar-Escobar, V.G.; Garrido-Vega, P.; González-Zamora, M.M. Applying the theory of constraints to the logistics service of medical records of a hospital. Eur. Res. Manag. Bus. Econ. 2016, 22, 139–146. [Google Scholar] [CrossRef] [Green Version]
- Librelato, P.T.; Lacerda, P.D.; Rodrigues, L.H.; Veit, D.R. A process improvement approach based on the value stream mapping and the theory of constraints thinking process. Bus. Process Manag. J. 2014, 20, 922–949. [Google Scholar] [CrossRef]
- Christophe, F.; Coatanea, E.; Bernard, A. Conceptual Design. In CIRP Encyclopedia of Production Engineering; Laperrière, L., Reinhart, G., Eds.; Springer: Berlin, Germany, 2014. [Google Scholar] [CrossRef]
- French, M.J. Conceptual Design for Engineers, 2nd ed.; The Design Council: London, UK, 1999. [Google Scholar] [CrossRef]
- Thompson, G. Improving Maintainability and Reliability through Design; Professional Engineering Publishing: London, UK, 1999. [Google Scholar]
- Ulewicz, R.; Jelonek, D.; Mazur, M. Implementation of logic flow in planning and production control. Manag. Prod. Eng. Rev. 2016, 7, 89–94. [Google Scholar] [CrossRef] [Green Version]
- Yin, T.; Stecke, K.E.; Li, D. The evolution of production systems from Industry 2.0 through Industry 4.0. Int. J. Prod. Res. 2018, 56, 848–861. [Google Scholar] [CrossRef] [Green Version]
- Asdecker, B.; Felch, V. Development of an Industry 4.0 maturity model for the delivery process in supply chains. J. Model. Manag. 2018, 13, 840–883. [Google Scholar] [CrossRef] [Green Version]
- Troll, C.; Schebitz, B.; Majschak, J.-P.; Döring, M.; Holowenko, O.; Ihlenfeldt, S. Commissioning new applications on processing machines: Part I—Process modelling. Adv. Mech. Eng. 2018, 10, 1–11. [Google Scholar] [CrossRef]
- Troll, C.; Schebitz, B.; Majschak, J.-P.; Döring, M.; Holowenko, O.; Ihlenfeldt, S. Commissioning new applications on processing machines: Part II—Implementation. Adv. Mech. Eng. 2018, 10, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Salkin, C.; Oner, M.; Ustundag, A.; Cevikcan, E. A Conceptual Framework for Industry 4.0. In Industry 4.0: Managing The Digital Transformation; Ustundag, A., Cevikcan, E., Eds.; Springer International Publishing: Cham, Switzerland, 2018. [Google Scholar] [CrossRef]
- Rüssmann, M.; Lorenz, M.; Gerbert, P.; Waldner, M.; Justus, J.; Engel, P.; Harnisch, M. Industry 4.0. The Future of Productivity and Growth in Manufacturing. Technical Report; The Boston Consulting Group: Boston, MA, USA, 2015. [Google Scholar]
- Oztemel, E.; Gursev, S. Literature review of Industry 4.0 and related technologies. J. Intell. Manuf. 2018, 31, 127–182. [Google Scholar] [CrossRef]
- Paelke, V. Augmented Reality in the Smart Factory Supporting Workers in an Industry 4.0 Environment. In Proceedings of the IEEE Emerging Technology and Factory Automation (ETFA), Barcelona, Spain, 16–19 September 2014; pp. 1–4. [Google Scholar] [CrossRef]
- Skórska, H. Systemy i zastosowania rzeczywistości rozszerzonej. Przegląd Mech. 2017, 1, 48–52. [Google Scholar] [CrossRef]
- Yang, C.; Liu, J.; Chen, S.; Huang, K. Virtual machine management system based on the power saving algorithm in cloud. J. Netw. Comput. Appl. 2017, 80, 165–180. [Google Scholar] [CrossRef]
- Leurent, H.; Betti, F.; Narayan, J.; de Boer, E.; Widmer, A.; Diaz, D.H.; George, K.; Marya, V.; Schmitz, C.; Kelly, R.; et al. Fourth Industrial Revolution Beacons of Technology and Innovation in Manufacturing; White Paper; World Economic Forum: Cologny/Geneva, Switzerland, 2019; Available online: http://www3.weforum.org/docs/WEF_4IR_Beacons_of_Technology_and_Innovation_in_Manufacturing_report_2019.pdf (accessed on 23 March 2020).
- O’Hare, J.; Cope, E.; Warde, S. Five Steps to Eco Design. Improving the Environmental Performance of Products through Design; Corporate Headquarters, Granta Design Limited: Cambridge, UK, 2015; Available online: https://www.grantadesign.com/download/pdf/FiveStepsToEcoDesign.pdf (accessed on 4 September 2020).
- Alexiev, V. Hyundai and Kia Debut Virtual Reality (VR) Design Evaluation System. 2019. Available online: https://press.kia.com/eu/en/home/media-resouces/press-releases/2019/Hyundai-and-Kia-Debut-VirtualReality-Design-Evaluation-System.html (accessed on 22 March 2020).
- Butt, J. A Strategic Roadmap for the Manufacturing Industry to Implement Industry 4.0. Designs 2020, 4, 11. [Google Scholar] [CrossRef]
- Fric, U.; Roncevic, B.; Ursic, E.D. Role of computer software tools in industrial symbiotic networks and the examination of sociocultural factors. Environ. Prog. Sustain. Energy 2020, 39. [Google Scholar] [CrossRef]
- Encyclopedia of Business “Computer-Aided Design (CAD) and Computer-Aided Manufacturing (CAM)”, 2nd ed. Available online: https://www.referenceforbusiness.com/encyclopedia/Clo-Con/Computer-Aided-Design-CAD-and-Computer-Aided-Manufacturing-CAM.html (accessed on 24 March 2020).
- Sniderman, B.; Mahto, M.; Cotteleer, M.J. Industry 4.0 and Manufacturing Ecosystems Exploring the World of Connected Enterprises; Deloitte University Press: Westlake, TX, USA, 2016; Available online: https://www2.deloitte.com/content/dam/insights/us/articles/manufacturing-ecosystems-exploring-world-connected-enterprises/DUP_2898_Industry4.0ManufacturingEcosystems.pdf (accessed on 23 March 2020).
- Gong, X.; Van der Wee, M.; De Pessemier, T.; Verbrugge, S.; Colle, D.; Martens, L.; Joseph, W. Energy- and Labor-aware Production Scheduling for Sustainable Manufacturing: A Case Study on Plastic Bottle Manufacturing. Procedia CIRP 2017, 61, 387–392. [Google Scholar] [CrossRef]
- Grywalski, M. DiaCom. Industrial Diaphragm Maker Achieves Seamless Transfer of Tool Design to Manufacturing with Solid Edge. Siemens PLM Software. 2019. Available online: https://media.plm.automation.siemens.com/solidedge/case-studies/Siemens-PLM-DiaCom-cs-52700-A11.pdf (accessed on 24 March 2020).
- Gontarz, A.M.; Hampl, D.; Weiss, L.; Wegener, K. Resource Consumption Monitoring in Manufacturing Environments. Procedia CIRP 2015, 26, 264–269. [Google Scholar] [CrossRef] [Green Version]
- Matsuda, M.; Matsumoto, S.; Noyama, N.; Sudo, Y.; Kimura, F. E-catalogue Library of Machines for Constructing Virtual Printed-circuit Assembly Lines. Procedia CIRP 2016, 57, 562–567. [Google Scholar] [CrossRef]
- Mawson, V.J.; Hughes, B.R. The development of modelling tools to improve energy efficiency in manufacturing processes and systems. J. Manuf. Syst. 2019, 51, 95–105. [Google Scholar] [CrossRef]
- Bugno, Ł.; Szalaty, A. Praca w zintegrowanym środowisku CAD/CAM i jej wpływ na jakość oraz czas produkcji. Przegląd Elektrotechniczny 2017, 93, 68–69. [Google Scholar] [CrossRef]
- Mearian, L. Inside Ford’s 3D Printing Lab, where thousands of parts are made. ComputerWorld. 4 June 2014. Available online: https://www.computerworld.com/article/2490192/emerging-technology-inside-ford-s-3d-printing-lab-where-thousands-of-parts-are-made.html (accessed on 23 March 2020).
- Roszak, A. Przemysł 4.0.—Definicje, znamiona, efekty. 2018. Available online: https://mensis.pl/przemysl-4-0-definicja-znamiona-efekty/ (accessed on 24 March 2020).
- Vissak, T. Recommendations for Using the Case Study Method in International Business Research. Qual. Rep. 2010, 15, 370–388. [Google Scholar]
- Ragin, C. What Is a Case?: Exploring the Foundations of Social Inquiry, 11th ed.; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
Steps | I4.0 Solutions | |||||
---|---|---|---|---|---|---|
ID | S | VT/AR | VT/VR | PI | VM | |
1. Development of technical and structural assumptions | + | + | + | |||
2. Parametric modelling of the new technology | + | + | + | + | + | |
3. Labour and costs analysis | + | + | ||||
4. Design of the product building process | + | + | + | + | + | |
5. Building and testing the first version of the product | + | + | + | + | ||
6. Optimisation of the product | + | + | + | + | ||
7. Tests in real conditions and validation | + | + |
Step | Duration of PDP | Changes Affected by I4.0 | Duration of PDP Under I4.0 |
---|---|---|---|
1. Development of technical and structural assumptions | 2 months |
| 1.75 months |
2. Parametric modelling of the new technology | 2 months |
| 1.5 months |
3. Labour and costs analysis | 1 month |
| 0.5 months |
4. Design of the product building process | 9 months |
| 12 months |
5. Building and testing the first version of the product | 8 months |
| |
6. Optimisation of the product | 4 months | — | |
7. Tests in real conditions and validation | 10 months |
| 10 months |
Total PDP time: | 36 months | 26 months |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Urban, W.; Łukaszewicz, K.; Krawczyk-Dembicka, E. Application of Industry 4.0 to the Product Development Process in Project-Type Production. Energies 2020, 13, 5553. https://doi.org/10.3390/en13215553
Urban W, Łukaszewicz K, Krawczyk-Dembicka E. Application of Industry 4.0 to the Product Development Process in Project-Type Production. Energies. 2020; 13(21):5553. https://doi.org/10.3390/en13215553
Chicago/Turabian StyleUrban, Wieslaw, Krzysztof Łukaszewicz, and Elżbieta Krawczyk-Dembicka. 2020. "Application of Industry 4.0 to the Product Development Process in Project-Type Production" Energies 13, no. 21: 5553. https://doi.org/10.3390/en13215553
APA StyleUrban, W., Łukaszewicz, K., & Krawczyk-Dembicka, E. (2020). Application of Industry 4.0 to the Product Development Process in Project-Type Production. Energies, 13(21), 5553. https://doi.org/10.3390/en13215553