Study of a Combined Demagnetization and Eccentricity Fault in an AFPM Synchronous Generator
Abstract
:1. Introduction
2. The AFPM Synchronous Generator
3. Model Validation
4. Types of Eccentricity
5. Fault Signature Analysis
6. Partial Demagnetization
7. Static Eccentricity Fault
7.1. Static Angular Eccentricity Fault
7.2. Static Axis Eccentricity Fault
8. The Combined Fault
8.1. The Combined Partial Demagnetization and Static Angular Eccentricity Fault
8.2. The Combined Partial Demagnetization and Static Axis Eccentricity Fault
9. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Mirimani, S.M.; Vahedi, A.; Marignetti, F.; De Santis, E. Static Eccentricity Fault Detection in Single-Stator–Single-Rotor Axial-Flux Permanent-Magnet Machines. IEEE Trans. Ind. Appl. 2012, 48, 1838–1845. [Google Scholar] [CrossRef]
- Mirimani, S.M.; Vahedi, A.; Marignetti, F.; Di Stefano, R. An Online Method for Static Eccentricity Fault Detection in Axial Flux Machines. IEEE Trans. Ind. Electron. 2015, 62, 1931–1942. [Google Scholar] [CrossRef]
- Faiz, J.; Nejadi-Koti, H. Demagnetization fault indexes in permanent magnet synchronous motors—An Overview. IEEE Trans. Magnet. 2016, 52. [Google Scholar] [CrossRef]
- Faiz, J.; Mazaheri Tehrani, E. Demagnetization modeling and fault diagnosing techniques in permanent magnet machines under stationary and non-stationary conditions an overview. IEEE Trans. Ind. Appl. 2016, 51, 2772–2785. [Google Scholar] [CrossRef]
- Capolino, G.-A.; Antonino-Daviu, J.A.; Riera-Guasp, M. Modern Diagnostics Techniques for Electrical Machines, Power Electronics, and Drives. IEEE Trans. Ind. Electron. 2015, 62, 1738–1745. [Google Scholar] [CrossRef]
- Duan, Y.; Toliyat, H. A Review of Condition Monitoring and Fault Diagnosis for Permanent Magnet Machines. In Proceedings of the 2012 IEEE Power and Energy Society General Meeting, San Diego, CA, USA, 22–26 July 2012. [Google Scholar]
- Ebrahimi, B.M.; Faiz, J.; Roshtkhari, M.J. Static-, Dynamic-, and Mixed-Eccentricity Fault Diagnoses in Permanent-Magnet Synchronous Motors. IEEE Trans. Ind. Electron. 2009, 56, 4727–4739. [Google Scholar] [CrossRef]
- Tarek, M.T.B.; Das, S.; Sozer, Y. Comparative Analysis of Static Eccentricity Faults of Double Stator Single Rotor Axial Flux Permanent Magnet Motors. In Proceedings of the 2019 Energy Conversion Congress and Exposition (ECCE), Baltimore, MD, USA, 29 September–3 October 2019. [Google Scholar]
- Mirimani, S.M.; Vahedi, A.; Marignetti, F. Effect of Inclined Static Eccentricity Fault in Single Stator-Single Rotor Axial Flux Permanent Magnet Machines. IEEE Trans. Magnet. 2012, 48, 143–149. [Google Scholar] [CrossRef]
- Marignetti, F.; Vahedi, A.; Mirimani, S.M. An Analytical Approach to Eccentricity in Axial Flux Permanent Magnet Synchronous Generators for Wind Turbines. Electr. Power Componets Syst. 2015, 43, 1039–1050. [Google Scholar] [CrossRef]
- Ogidi, O.O.; Barendse, P.S.; Khan, M.A. Detection of Static Eccentricities in Axial-Flux Permanent-Magnet Machines with Concentrated Windings Using Vibration Analysis. IEEE Trans. Ind. Appl. 2015, 51, 4425–4434. [Google Scholar] [CrossRef]
- Ogidi, O.O.; Barendse, P.S.; Khan, M.A. Fault diagnosis and condition monitoring of axial-flux permanent magnet wind generators. Electr. Power Syst. Res. 2016, 136, 1–7. [Google Scholar] [CrossRef]
- Huang, Y.; Guo, B.; Hemeida, A.; Sergeant, P. Analytical Modeling of Static Eccentricities in Axial Flux Permanent-Magnet Machines with Concentrated Windings. Energies 2016, 9, 892. [Google Scholar] [CrossRef] [Green Version]
- Ogidi, O.O.; Barendse, P.S.; Khan, M.A. Influence of Rotor Topologies and Cogging Torque Minimization Techniques in the Detection of Static Eccentricities in Axial-Flux Permanent-Magnet Machine. IEEE Trans. Ind. Appl. 2017, 53, 161–170. [Google Scholar] [CrossRef]
- Thiele, M.; Heins, G. Computationally Efficient Method for Identifying Manufacturing Induced Rotor and Stator Misalignment in Permanent Magnet Brushless Machines. IEEE Trans. Ind. Appl. 2016, 48, 3033–3040. [Google Scholar] [CrossRef]
- Guo, B.; Huang, Y.; Peng, F.; Guo, Y.; Zhu, J. Analytical Modeling of Manufacturing Imperfections in Double-Rotor Axial Flux PM Machines: Effects on Back EMF. IEEE Trans. Magnet. 2017, 53. [Google Scholar] [CrossRef] [Green Version]
- Barmpatza, A.C.; Kappatou, J.C.; Skarmoutsos, G.A. Investigation of Static Angular and Axis Misalignment in an AFPM Generator. In Proceedings of the 2019 IEEE Workshop on Electrical Machines Design, Control and Diagnosis (WEMDCD), Athens, Greece, 22–23 April 2019. [Google Scholar]
- Barmpatza, A.C.; Kappatou, J.C. A Study of Static Angular and Axis Eccentricity in a Double-Sided Rotor AFPM Generator using 3D-FEM. In Proceedings of the 2019 IEEE International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives (SDEMPED), Toulouse, France, 27–30 August 2019. [Google Scholar]
- Di Gerlando, A.; Foglia, G.M.; Iacchetti, M.F.; Perini, R. Effects of Manufacturing Imperfections in Concentrated Coil Axial Flux PM Machines: Evaluation and Tests. IEEE Trans. Ind. Electron. 2014, 61, 5012–5024. [Google Scholar] [CrossRef]
- Guo, B.; Huang, Y.; Peng, F.; Dong, J.; Li, Y. Analytical Modelling of Misalignment in Axial Flux Permanent Magnet Machine. IEEE Trans. Ind. Electron 2020, 67, 4433–4443. [Google Scholar] [CrossRef]
- Ajily, E.; Ardebili, M.; Abbaszadeh, K. Magnet defect and rotor eccentricity modeling in axial-flux permanent-magnet machines via 3-D Field Reconstruction Method. IEEE Trans. Energy Convers. 2016, 31, 486–495. [Google Scholar] [CrossRef]
- Guo, B.; Huang, Y.; Peng, F.; Dong, J. General Analytical Modeling for Magnet Demagnetization in Surface Mounted Permanent Magnet Machines. IEEE Trans. Ind. Electron. 2019, 66, 5830–5838. [Google Scholar] [CrossRef] [Green Version]
- Verkroost, L.; De Bisschop, J.; Vansompel, H.; De Belie, F.; Sergeant, P. Active Demagnetization Fault Compensation for Axial Flux Permanent Magnet Synchronous Machines Using an Analytical Inverse Model. IEEE Trans. Energy Convers. 2020, 35, 591–599. [Google Scholar] [CrossRef]
- De Bisschop, J.; Abou-Elyazied Abdallh, A.; Sergeant, P.; Dupré, L. Analysis and selection of harmonics sensitive to demagnetisation faults intended for condition monitoring of double rotor axial flux permanent magnet synchronous machines. IET Electr. Power Appl. 2018, 12, 486–493. [Google Scholar] [CrossRef] [Green Version]
- De Bisschop, J.; Abdallh, A.; Sergeant, P.; Dupré, L. Identification of demagnetization faults in axial flux permanent magnet synchronous machines using an inverse problem coupled with an analytical model. IEEE Trans. Magnet. 2014, 50. [Google Scholar] [CrossRef]
- Saavedra, H.; Riba, J.-R.; Romeral, L. Magnet shape influence on the performance of AFPMM with demagnetization. In Proceedings of the 2013 Annual Conference of the IEEE Industrial Electronics Society (IECON), Vienna, Austria, 10–13 November 2013. [Google Scholar]
- Bahador, N.; Darabi, A.; Hasanabadi, H. Demagnetization analysis of axial flux permanent magnet motor under three phase short circuit fault. In Proceedings of the 2013 Annual International Power Electronics, Drive Systems and Technologies Conference, Tehran, Iran, 13–14 February 2013. [Google Scholar]
- De Bisschop, J.; Vansompel, H.; Sergeant, P.; Dupré, L. Demagnetization Fault Detection in Axial Flux PM Machines by Using Sensing Coils and an Analytical Model. IEEE Trans. Magnet. 2017, 53. [Google Scholar] [CrossRef]
- Barmpatza, A.C.; Kappatou, J.C. Demagnetization Faults Detection in an Axial Flux Permanent Magnet Synchronous Generator. In Proceedings of the 2017 IEEE International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives (SDEMPED), Tinos, Greece, 29 August–1 September 2017. [Google Scholar]
- Barmpatza, A.C.; Kappatou, J.C. Study of the Demagnetization Fault in an AFPM Machine in Relation with the Magnet Location. In Proceedings of the 2018 International Conference on Electrical Machines (ICEM), Alexandroupoli, Greece, 3–6 September 2018. [Google Scholar]
- De Bisschop, J.; Sergeant, P.; Hemeida, A.; Vansompel, H.; Dupré, L. Analytical Model for Combined Study of Magnet Demagnetization and Eccentricity Defects in Axial Flux Permanent Magnet Synchronous Machines. IEEE Trans. Magnet. 2017, 53. [Google Scholar] [CrossRef]
- Kappatou, J.C.; Zalokostas, J.D.; Spyratos, D.A. 3-D FEM Analysis, Prototyping and Tests of an Axial Flux Permanent-Magnet Wind Generator. Energies 2017, 10, 1269. [Google Scholar] [CrossRef] [Green Version]
- Radwan-Praglowska, N.; Wegiel, T.; Borkowski, D. Parameters Identification of Coreless Axial Flux Permanent Magnet Generator. Arch. Electr. Eng. 2018, 62, 391–402. [Google Scholar] [CrossRef]
- Urresty, J.C.; Riba, J.-R.; Romeral, L. A Back-emf based method to detect magnet failures in PMSMs. IEEE Trans. Magnet. 2013, 49, 591–598. [Google Scholar] [CrossRef]
- Urresty, J.C.; Riba, J.-R.; Romeral, L. Influence of the stator windings configuration in the currents and Zero-Sequence voltage harmonics in permanent magnet synchronous motors with demagnetization faults. IEEE Trans. Magnet. 2013, 49, 4885–4893. [Google Scholar] [CrossRef]
- Goktas, T.; Zafarani, M.; Akin, B. Discernment of broken magnet and static eccentricity faults in permanent magnet synchronous motors. IEEE Trans. Energy Convers. 2016, 31, 578–587. [Google Scholar] [CrossRef]
- Barmpatza, A.C.; Kappatou, J.C. Study of the Total Demagnetization Fault of an AFPM Wind Generator. IEEE Trans. Energy Convers. 2020. [Google Scholar] [CrossRef]
Harmonic Order | F (Hz) | Generator with One 50% Partially Demagnetized Magnet | Generator with One 80% Partially Demagnetized Magnet | ||
---|---|---|---|---|---|
(dB) | (V) | (dB) | (V) | ||
0.5 | 25 | −42.33 | 0.2455 | −35.10 | 0.5581 |
1 | 50 | 0 | 32.12 | 0 | 31.74 |
1.5 | 75 | −48.88 | 0.1156 | −41.29 | 0.2733 |
2 | 100 | −76.84 | 0.004686 | −67.97 | 0.01299 |
2.5 | 125 | −71.04 | 0.009101 | −59.38 | 0.03411 |
3.5 | 175 | −73.79 | 0.006643 | −68.48 | 0.01198 |
4 | 200 | −76.03 | 0.00501 | −71.77 | 0.008362 |
4.5 | 225 | −76.1 | 0.005209 | −70.28 | 0.00991 |
Harmonic | f (Hz) | Healthy Generator | Generator with 30% Static Angular Eccentricity | Generator with 40% Static Angular Eccentricity | |||
---|---|---|---|---|---|---|---|
(dB) | (V) | (dB) | (V) | (dB) | (V) | ||
fs | 50 | −44.33 | 0.00634 | −37.51 | 0.01392 | −35.29 | 0.01816 |
3fs | 150 | 0 | 1.043 | 0 | 1.045 | 0 | 1.056 |
Harmonic | f (Hz) | Healthy Generator | Generator with 2mm Static Axis Eccentricity (dB) | Generator with 3mm Static Axis Eccentricity (dB) | |||
---|---|---|---|---|---|---|---|
(dB) | (V) | (dB) | (V) | (dB) | (V) | ||
fs | 50 | −44.33 | 0.00634 | −31.01 | 0.03033 | −40.47 | 0.01051 |
3fs | 150 | 0 | 1.043 | 0 | 1.077 | 0 | 1.109 |
Harmonic Order | f (Hz) | Healthy Generator | Generator with One 20% Partially Demagnetized Magnet and 30% Static Angular Eccentricity | Generator with One 50% Partially Demagnetized Magnet and 30% Static Angular Eccentricity | Generator with One 80% Partially Demagnetized Magnet and 30% Static Angular Eccentricity | ||||
---|---|---|---|---|---|---|---|---|---|
(dB) | (V) | (dB) | (V) | (dB) | (V) | (dB) | (V) | ||
0.375 | 18.75 | - | 5.366 × 10−5 | - | 0.001382 | −77.24 | 0.004418 | −70.1 | 0.009934 |
0.5 | 25 | - | 0.00219 | −52.52 | 0.07655 | −42.35 | 0.2452 | −35.1 | 0.5586 |
0.625 | 31.25 | - | 2.246 × 10−5 | - | 0.002323 | −72.76 | 0.007402 | −65.6 | 0.01669 |
0.875 | 43.75 | - | 8.122 × 10−5 | −79.67 | 0.003362 | −69.71 | 0.01052 | −62.51 | 0.02379 |
1 | 50 | 0 | 32.07 | 0 | 32.36 | 0 | 32.16 | 0 | 31.78 |
1.125 | 56.25 | - | 5.785 × 10−5 | −79.35 | 0.003489 | −69.18 | 0.01117 | −61.86 | 0.02566 |
1.375 | 68.75 | - | 0.0002289 | - | 0.002056 | −73.73 | 0.006621 | −68.75 | 0.01541 |
1.5 | 75 | - | 0.001492 | −59.27 | 0.03521 | −48.87 | 0.1158 | −41.29 | 0.2739 |
1.625 | 81.25 | - | 0.0001917 | - | 0.00158 | −75.43 | 0.005441 | −67.7 | 0.0131 |
2 | 100 | - | 0.001133 | - | 0.001901 | −76.74 | 0.004682 | −67.75 | 0.01302 |
2.5 | 125 | - | 0.0009809 | - | 0.001735 | −71.1 | 0.008965 | −59.4 | 0.03406 |
3.5 | 175 | - | 0.0006477 | - | 0.002879 | −73.7 | 0.006641 | −68.56 | 0.01186 |
4 | 200 | - | 0.001959 | −79.36 | 0.003483 | −75.64 | 0.005314 | −71.25 | 0.008699 |
4.5 | 225 | −78.11 | 0.003984 | −76.9 | 0.004623 | −75.35 | 0.00549 | −70.03 | 0.01001 |
Harmonic Order | F (Hz) | Healthy Generator | Generator with One 50% Partially Demagnetized Magnet and 20% Static Angular Eccentricity | Generator with One 50% Partially Demagnetized Magnet and 30% Static Angular Eccentricity | Generator with One 50% Partially Demagnetized Magnet and 40% Static Angular Eccentricity | ||||
---|---|---|---|---|---|---|---|---|---|
(dB) | (V) | (dB) | (V) | (dB) | (V) | (dB) | (V) | ||
0.375 | 18.75 | - | 5.366 × 10−5 | - | 0.002912 | −77.24 | 0.004418 | −74.76 | 0.005873 |
0.5 | 25 | - | 0.00219 | −42.33 | 0.2456 | −42.35 | 0.2452 | −42.35 | 0.2458 |
0.625 | 31.25 | - | 2.246 × 10−5 | −76.4 | 0.004863 | −72.76 | 0.007402 | −70.34 | 0.009796 |
0.875 | 43.75 | - | 8.122 × 10−5 | −73.24 | 0.006998 | −69.71 | 0.01052 | −67.39 | 0.01375 |
1 | 50 | 0 | 32.07 | 0 | 32.13 | 0 | 32.16 | 0 | 32.2 |
1.125 | 56.25 | - | 5.785 × 10−5 | −72.59 | 0.005742 | −69.18 | 0.01117 | −66.75 | 0.01481 |
1.375 | 68.75 | - | 0.0002289 | −77.46 | 0.004302 | −73.73 | 0.006621 | −71.39 | 0.008676 |
1.5 | 75 | - | 0.001492 | −48.87 | 0.1157 | −48.87 | 0.1158 | −48.85 | 0.1163 |
1.625 | 81.25 | - | 0.0001917 | −78.57 | 0.003786 | −75.43 | 0.005441 | −72.82 | 0.007364 |
2 | 100 | - | 0.001133 | −76.76 | 0.004668 | −76.74 | 0.004682 | −76.98 | 0.004557 |
2.5 | 125 | - | 0.0009809 | −71.22 | 0.008831 | −71.1 | 0.008965 | −71.18 | 0.008893 |
3.5 | 175 | - | 0.0006477 | −73.55 | 0.00675 | −73.7 | 0.006641 | −73.21 | 0.007038 |
4 | 200 | - | 0.001959 | −75.9 | 0.00515 | −75.64 | 0.005314 | −76.18 | 0.004998 |
4.5 | 225 | −78.11 | 0.003984 | −75.53 | 0.005375 | −75.35 | 0.00549 | −75.16 | 0.005619 |
Harmonic Order | f (Hz) | Healthy Generator | Generator with One 50% Partially Demagnetized Magnet and 2mm Static Axis Eccentricity | Generator with One 80% Partially Demagnetized Magnet and 2mm Static Axis Eccentricity | |||
---|---|---|---|---|---|---|---|
(dB) | (V) | (dB) | (V) | (dB) | (V) | ||
0.375 | 18.75 | - | 5.366 × 10−5 | −74.56 | 0.005965 | −67.27 | 0.01365 |
0.5 | 25 | - | 0.00219 | −42.3 | 0.2448 | −35.06 | 0.5566 |
0.625 | 31.25 | - | 2.246 × 10−5 | −68.75 | 0.01165 | −61.59 | 0.02624 |
0.875 | 43.75 | - | 8.122 × 10−5 | −64.64 | 0.01869 | −57.39 | 0.04255 |
1 | 50 | 0 | 32.07 | 0 | 31.89 | 0 | 31.52 |
1.125 | 56.25 | - | 5.785 × 10−5 | −63.1 | 0.02231 | −55.78 | 0.05123 |
1.375 | 68.75 | - | 0.0002289 | −67.99 | 0.01271 | −60.57 | 0.02951 |
1.5 | 75 | - | 0.001492 | −48.95 | 0.1139 | −41.36 | 0.2694 |
1.625 | 81.25 | - | 0.0001917 | −68.4 | 0.01212 | −60.73 | 0.02897 |
2 | 100 | - | 0.001133 | −76.79 | 0.004618 | −67.78 | 0.01287 |
2.5 | 125 | - | 0.0009809 | −71.59 | 0.008395 | −59.72 | 0.03254 |
3.5 | 175 | - | 0.0006477 | −73.73 | 0.006561 | −68.59 | 0.01172 |
4 | 200 | - | 0.001959 | −76.38 | 0.004839 | −72.15 | 0.007781 |
4.5 | 225 | −78.11 | 0.003984 | −76.22 | 0.004926 | −70.75 | 0.00914 |
Harmonic Order | f (Hz) | Healthy Generator | Generator with One 50% Partially Demagnetized Magnet and 2mm Static Axis Eccentricity | Generator with One 50% Partially Demagnetized Magnet and 2.5mm Static Axis Eccentricity | Generator with One 50% Partially Demagnetized Magnet and 3mm Static Axis Eccentricity | ||||
---|---|---|---|---|---|---|---|---|---|
(dB) | (V) | (dB) | (V) | (dB) | (V) | (dB) | (V) | ||
0.375 | 18.75 | - | 5.366 × 10−5 | −74.56 | 0.005965 | −72.63 | 0.007425 | −70.99 | 0.008928 |
0.5 | 25 | - | 0.00219 | −42.3 | 0.2448 | −42.28 | 0.2445 | −42.26 | 0.2439 |
0.625 | 31.25 | - | 2.246 × 10−5 | −68.75 | 0.01165 | −66.8 | 0.01454 | −65.21 | 0.01739 |
0.875 | 43.75 | - | 8.122 × 10−5 | −64.64 | 0.01869 | −62.73 | 0.02323 | −61.21 | 0.02782 |
1 | 50 | 0 | 32.07 | 0 | 31.89 | 0 | 31.79 | 0 | 31.66 |
1.125 | 56.25 | - | 5.785 × 10−5 | −63.1 | 0.02231 | −61.19 | 0.02773 | −59.6 | 0.03313 |
1.375 | 68.75 | - | 0.0002289 | −67.99 | 0.01271 | −66.02 | 0.0159 | −64.55 | 0.01875 |
1.5 | 75 | - | 0.001492 | −48.95 | 0.1139 | −48.98 | 0.1131 | −49.02 | 0.1121 |
1.625 | 81.25 | - | 0.0001917 | −68.4 | 0.01212 | −66.4 | 0.01522 | −64.79 | 0.01823 |
2 | 100 | - | 0.001133 | −76.79 | 0.004618 | −76.66 | 0.004671 | −77.04 | 0.00445 |
2.5 | 125 | - | 0.0009809 | −71.59 | 0.008395 | −71.92 | 0.008061 | −71.93 | 0.008013 |
3.5 | 175 | - | 0.0006477 | −73.73 | 0.006561 | −74.01 | 0.006336 | −74.28 | 0.006118 |
4 | 200 | - | 0.001959 | −76.38 | 0.004839 | −76.5 | 0.004758 | −77.16 | 0.004392 |
4.5 | 225 | −78.11 | 0.003984 | −76.22 | 0.004926 | −76.48 | 0.004767 | −77.1 | 0.00442 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barmpatza, A.C.; Kappatou, J.C. Study of a Combined Demagnetization and Eccentricity Fault in an AFPM Synchronous Generator. Energies 2020, 13, 5609. https://doi.org/10.3390/en13215609
Barmpatza AC, Kappatou JC. Study of a Combined Demagnetization and Eccentricity Fault in an AFPM Synchronous Generator. Energies. 2020; 13(21):5609. https://doi.org/10.3390/en13215609
Chicago/Turabian StyleBarmpatza, Alexandra C., and Joya C. Kappatou. 2020. "Study of a Combined Demagnetization and Eccentricity Fault in an AFPM Synchronous Generator" Energies 13, no. 21: 5609. https://doi.org/10.3390/en13215609
APA StyleBarmpatza, A. C., & Kappatou, J. C. (2020). Study of a Combined Demagnetization and Eccentricity Fault in an AFPM Synchronous Generator. Energies, 13(21), 5609. https://doi.org/10.3390/en13215609