Reliability of PEA Measurement in Presence of an Air Void Defect
Abstract
:1. Introduction
2. Mathematical Model
3. Acoustic Wave Behavior Within the PEA Cell
4. Measurement Procedure and Specimens Under Test
5. Experimental Test
5.1. Three Layers Specimen, the PET-PET-PET Configuration
5.2. Three Layers Specimen, the PET-AIR-PET Configuration
6. Results Discussion
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Imburgia, A.; Miceli, R.; Sanseverino, E.R.; Romano, P.; Viola, F. Review of space charge measurement systems: Acoustic, thermal and optical methods. IEEE Trans. Dielectr. Electr. Insul. 2016, 23, 3126–3142. [Google Scholar] [CrossRef]
- Mazzanti, G.; Marzinotto, M. Extruded Cables for High Voltage Direct Current Transmission: Advances in Research and Development; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- Zhao, X.; Pu, L.; Liu, J.; Duan, W.; Ju, Z.; Sun, H.; Huang, B.; Hao, M.; Chen, G.; Feng, N. Temperature gradient effect on the space charge behaviour in multilayers of oil and pressboard. IEEE Trans. Dielectr. Electr. Insul. 2019, 26, 1645–1653. [Google Scholar] [CrossRef]
- Kawano, S.; Ishikawa, K.; Miyake, H.; Tanaka, Y. Space charge accumulation characteristics in multilayered polyimide films under DC high stress. In Proceedings of the IEEE International Conference on Solid Dielectrics (ICSD), Bologna, Italy, 30 June–4 July 2013; pp. 393–396. [Google Scholar]
- Huang, B.; Xu, Z.; Hao, M.; Chen, G. Multilayers oil and oil-impregnated pressboard electric field simulation based on space charge. IEEE Trans. Dielectr. Electr. Insul. 2019, 26, 530–538. [Google Scholar] [CrossRef]
- Chen, J.; Gao, Y.M.; Zhu, J.L.; Yu, Q. Space charge dynamics in double-layered Insul. cable under polarity reversal voltage. IEEE Trans. Dielectr. Electr. Insul. 2020, 27, 622–630. [Google Scholar] [CrossRef]
- Tohmine, T.; Fujitomi, T.; Miyake, H.; Tanaka, Y.; Ida, Y.; Inoue, Y. Measurement of space charge accumulated in multi-layered samples composed of different insulators used in the joints of DC transmission cables. In Proceedings of the International Symposium on Electrical Insulating Materials (ISEIM), Toyohashi, Japan, 11–15 September 2017; pp. 299–302. [Google Scholar]
- Iguchi, K.; Tohmine, T.; Miyake, H.; Tanaka, Y.; Takada, T.; Ida, Y.; Murata, Y.; Inoue, Y. Space charge accumulation characteristics in double-layered samples simulating DC cable joints. In Proceedings of the 12th International Conference on the Properties and Applications of Dielectric Materials (ICPADM), Xi’an, China, 20–24 May 2018; pp. 119–123. [Google Scholar]
- Hozumi, N.; Takeda, T.; Suzuki, H.; Okamoto, T. Space charge behaviorin XLPE cable Insul. under 0.2–1.2 MV/cm dc fields. IEEE Trans. Dielectr. Electr. Insul. 1998, 5, 82–90. [Google Scholar] [CrossRef]
- Takeda, T.; Hozumi, N.; Suzuki, H.; Fujii, K.; Terashima, K.; Hara, M.; Mutrata, Y.; Wantanabe, K.; Yoshida, M. Space charge behavior in fullsize 250 kV DC XLPE cables. IEEE Trans. Power Deliv. 1998, 13, 28–39. [Google Scholar] [CrossRef]
- Bodega, R.; Morshuis, P.H.F.; Smit, J.J. Space charge measurements on multi-dielectrics by means of the pulsed electroacoustic method. IEEE Trans. Dielectr. Electr. Insul. 2006, 13, 272–281. [Google Scholar] [CrossRef]
- Bodega, R.; Morshuis, P.H.F.; Smit, J.J. Electrostatic force distribution in a multi-layer dielectric tested by means of the PEA method. IEEE Int. Conf. Solid Dielectr. 2004, 1, 264–267. [Google Scholar]
- Imburgia, A.; Romano, P.; Ala, G.; Rizzo, G.; Giglia, G.; Viola, F. Acoustic Wave Behavior in a Specimen Containing an Air Void Defect. In Proceedings of the IEEE Conference on Electrical Insul. and Dielectric Phenomena (CEIDP), Richland, WA, USA, 20–23 October 2019; pp. 470–473. [Google Scholar]
- Imburgia, A.; Romano, P.; Ala, G.; Riva Sanseverino, E.; Giglia, G. The Role of Right Interpretation of Space Charge Distribution for Optimized Design of HVDC Cables. IEEE Trans. Ind. Appl. 2019, 55, 7165–7174. [Google Scholar] [CrossRef]
- De Araujo Andrade, M.; Candela, R.; De Rai, L.G.; Franchi Bononi, S.; Imburgia, A.; Riva Sanseverino, E.; Romano, P.; Viola, F. Interpretation of PEA Output Signal in a Multilayer Specimen. In Proceedings of the IEEE Conference on Electrical Insul. and Dielectric Phenomena (CEIDP), Cancun, Mexico, 21–24 October 2018; pp. 101–104. [Google Scholar]
- Romano, P.; Imburgia, A. Effect of Acoustic Wave Reflections on Space Charge Measurements with PEA Method. In Proceedings of the IEEE 4th International Forum on Research and Technology for Society and Industry (RTSI), Palermo, Italy, 10–13 September 2018; pp. 1–6. [Google Scholar]
- Imburgia, A.; Romano, P.; Chen, G.; Huang, B.; Ala, G.; Riva Sanseverino, E.; Viola, F. The Acoustic Wave Behavior Within the PEA Cell for Space Charge Measurement. In Proceedings of the IEEE Conference on Electrical Insul. and Dielectric Phenomena (CEIDP), Cancun, Mexico, 21–24 October 2018; pp. 275–278. [Google Scholar]
- Imburgia, A.; Romano, P.; Chen, G.; Rizzo, G.; Riva Sanseverino, E.; Viola, F.; Ala, G. The Industrial Applicability of PEA Space Charge Measurements, for Performance Optimization of HVDC Power Cables. Energies 2019, 12, 4186. [Google Scholar] [CrossRef] [Green Version]
- Imburgia, A.; Romano, P.; Riva, S.E.; Rai, L.D.; Bononi, S.F.; Troia, I. Pulsed Electro-Acoustic Method for specimens and cables employed in HVDC systems: Some feasibility considerations. In Proceedings of the AEIT International Annual Conference, Bari, Italy, 3–5 October 2018; pp. 1–6. [Google Scholar]
- Hou, Y.; Huang, B.; Chen, G.; Ye, K.; Zhao, X. The improvement of the Pulsed-Electroacoustic (PEA) system measurement from the acoustic wave transportation perspective. In Proceedings of the 12th International Conference on the Properties and Applications of Dielectric Materials (ICPADM), Xi’an, China, 20–24 May 2018; pp. 1024–1027. [Google Scholar]
- Huang, B.; Hao, M.; Xu, Z.; Chen, G.; Tang, C.; Hao, J. Research on thickness ratio and multilayers effect on the oil and paper space charge distribution. In Proceedings of the International Conference on Condition Monitoring and Diagnosis (CMD), Xi’an, China, 25–28 September 2016; pp. 40–43. [Google Scholar]
- Montanari, G.C. Bringing an Insul. to failure: The role of space charge. IEEE Trans. Dielectr. Electr. Insul. 2011, 18, 339–364. [Google Scholar] [CrossRef]
- Rahimi, M.; Javadinezhad, R.; Vakilian, M. DC partial discharge characteristics for corona, surface and void discharges. In Proceedings of the IEEE 11th International Conference on the Properties and Applications of Dielectric Materials (ICPADM), Sydney, Australia, 19–22 July 2015; pp. 260–263. [Google Scholar]
- Morshuis, P.; Cavallini, A.; Fabiani, D.; Montanari, G.C.; Azcarraga, C. Stress conditions in HVDC equipment and routes to in service failure. IEEE Trans. Dielectr. Electr. Insul. 2015, 22, 81–91. [Google Scholar] [CrossRef]
- Narita, T.; Mima, M.; Miyake, H.; Tanaka, Y.; Kozako, M.; Hikita, M. Investigation for influence of space charge accumulation in motor winding coating material on partial discharge inception voltage. In Proceedings of the IEEE Conference on Electrical Insul. and Dielectric Phenomena (CEIDP), Richland, WA, USA, 20–23 October 2019; pp. 637–640. [Google Scholar]
- Chen, G.; Zhou, C.; Li, S.; Zhong, L. Space charge and its role in electric breakdown of solid Insul. In Proceedings of the IEEE International Power Modulator and High Voltage Conference (IPMHVC), San Francisco, CA, USA, 6–9 July 2016; pp. 120–127. [Google Scholar]
- Francis, A.; Martinez, A.; Thompson, K.; Burke, K.; Zirnheld, J. Space charge accumulation as a contributor to partial discharge activity in dielectric elastomer actuators under high voltage DC. In Proceedings of the IEEE International Power Modulator and High Voltage Conference (IPMHVC), San Francisco, CA, USA, 6–9 July 2016; pp. 330–335. [Google Scholar]
- Wei, Y.; Mu, H.; Deng, J.; Zhang, G. Effect of space charge on breakdown characteristics of aged oil-paper Insul. under DC voltage. IEEE Trans. Dielectr. Electr. Insul. 2016, 23, 3143–3150. [Google Scholar] [CrossRef]
- Imburgia, A.; Romano, P.; Viola, F.; Madonia, A.; Candela, R.; Troia, I. Space charges and partial discharges simultaneous measurements under DC stress. In Proceedings of the IEEE Conference on Electrical Insul. and Dielectric Phenomena (CEIDP), Toronto, ON, Canada, 16–19 October 2016; pp. 514–517. [Google Scholar]
- Cavallini, A.; Ciani, F.; Montanari, G.C. The effect of space charge on phenomenology of partial discharges in Insul. cavities. In Proceedings of the Annual Report Conference on Electrical Insul. and Dielectric Phenomena, Nashville, TN, USA, 16–19 October 2005; pp. 410–413. [Google Scholar]
- Kan, T.; Abe, K.; Miyake, H.; Tanaka, Y.; Maeno, T. The Influence of corona discharge on space charge accumulation in polyimide film. In Proceedings of the Annual Report Conference on Electrical Insul. and Dielectric Phenomena, Shenzhen, China, 20–23 October 2013; pp. 258–261. [Google Scholar]
- Vissouvanadin, B.; Laurent, C.; Le Roy, S.; Teyssèdre, G.; Denizet, I.; Mammeri, M.; Poisson, B. A deconvolution technique for space charge recovery in lossy and dispersive dielectrics using PEA method. In Proceedings of the Annual Report Conference on Electrical Insul. and Dielectic Phenomena, West Lafayette, IN, USA, 17–20 October 2010; pp. 1–4. [Google Scholar]
- Zou, R.; Hao, J.; Liao, R. Space/Interface Charge Analysis of the Multi-Layer Oil Gap and Oil Impregnated Pressboard Under the Electrical-Thermal Combined Stress. Energies 2019, 12, 1099. [Google Scholar] [CrossRef] [Green Version]
- Imburgia, A. Modelling of Pulsed Electro Acoustic Method for Space Charge Detection on Single and Multilayer Dielectrics. Ph.D. Thesis, University of Palermo, Palermo, Italy, 2018. [Google Scholar]
Specimen | PEA Cell Component | ||||
---|---|---|---|---|---|
Layer A | Layer B | Ground Electrode | Sensor | Absorber | |
Material | PET | Air | Aluminum | PVDF | PVDF |
Thickness (mm) | 0.11 | 0.11 | 10 | 9 × 10−3 | 250 × 10−3 |
v (m/s) | 2558 | 344 | 6420 | 2260 | 2260 |
ρ (kg/m3) | 1380 | 1.225 | 2690 | 1780 | 1780 |
Z (kg/m2s) | 3.5 × 106 | 421.4 | 17 × 106 | 4 × 106 | 4 × 106 |
Time (μs) | τA = 0.043 | τB = 0.31 | τGR = 1.56 | τSE = 0.003 | τABS = 0.11 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Imburgia, A.; Romano, P.; Rizzo, G.; Viola, F.; Ala, G.; Chen, G. Reliability of PEA Measurement in Presence of an Air Void Defect. Energies 2020, 13, 5652. https://doi.org/10.3390/en13215652
Imburgia A, Romano P, Rizzo G, Viola F, Ala G, Chen G. Reliability of PEA Measurement in Presence of an Air Void Defect. Energies. 2020; 13(21):5652. https://doi.org/10.3390/en13215652
Chicago/Turabian StyleImburgia, Antonino, Pietro Romano, Giuseppe Rizzo, Fabio Viola, Guido Ala, and George Chen. 2020. "Reliability of PEA Measurement in Presence of an Air Void Defect" Energies 13, no. 21: 5652. https://doi.org/10.3390/en13215652
APA StyleImburgia, A., Romano, P., Rizzo, G., Viola, F., Ala, G., & Chen, G. (2020). Reliability of PEA Measurement in Presence of an Air Void Defect. Energies, 13(21), 5652. https://doi.org/10.3390/en13215652