An Adjusted Weight Metric to Quantify Flexibility Available in Conventional Generators for Low Carbon Power Systems
Abstract
:1. Introduction
- The developed metric employs a new adjusting weight mechanism based on correlation analysis (between flexibility parameters) and applying analytic hierarchy process (AHP) based on adopting a participatory approach.
- A new ranking technique by incorporating the flexibility ranking of thermal units to overcome the hidden power system inflexibilities imposed by traditional unit commitment solution for optimal generation scheduling at a higher share of RES with the minimal possible cost.
- The presented metric in this article provides a more realistic and accurate quantification of the available technical flexibility from individual generating units and the overall system without performing time-consuming multi-temporal simulations.
- It can be used ‘offline’ to evaluate the provided flexibility. Additionally, it facilitates comparisons, in terms of available technical flexibility, between different scenarios.
- It can be used as a tool for power system operators to provide insightful and quick information about the inherent system flexibility (between different importance weights of the flexibility parameters in different scenarios).
2. Description of Selected Flexibility Parameters
2.1. Ramp Rates
2.2. Generation Capacity
3. Development of the Proposed AWFM Framework
3.1. Normalization
3.2. Analytic Hierarchy Process
3.3. Correlation Analysis
3.4. Consistency Ratio Calculations
3.5. Weighting Mechanism and Scenarios Creation
3.6. Scenario Creation: Tree Diagram
3.7. Aggregation
3.8. Test System
4. Results and Discussion
4.1. AWFM Indices of Generators and Overall System
4.2. Weighting Mechanism
4.3. Consistency Ratio Calculations
4.4. Robustness and Sensitivity Analysis
4.5. Impact of Adding New Generator on AWFM’s Flexibility Indices
4.6. Optimal Unit Commitment Solution by Incorporating the Flexibility Ranking of Thermal Units
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
The output power of unit n at hour t | |
Ramping up of unit | |
Ramping down of unit | |
Minimum real power output | |
Maximum real power output | |
Normalized value of | |
Value of the parameter for the generating unit | |
Maximum values of parameter across all generating units | |
Minimum values of parameter across all generating units | |
Number of values for each of indicator and | |
Means of indicator | |
Means of indicator | |
Standard deviation of indicators | |
Standard deviation of indicators | |
Principal eigenvalue | |
Number of pairwise comparisons | |
Flexibility of unit i | |
Average of and | |
Intensity of importance of ramping in relation to capacity | |
relative weights of capacity to ramping | |
AWFM | Adjusted weight flexibility metric |
RES | Renewable energy source |
RUR | Ramp up rate |
RDR | Ramp down rate |
IRRE | Insufficient ramping resource expectation |
EPRI | Electric Power Research Institute |
AHP | Analytic hierarchy process |
CR | Consistency ratio |
MW | Mega watt |
NFI | Normalized flexibility index |
References
- Yang, Y.; Yu, J.; Yang, M.; Ren, P.; Yang, Z.; Wang, G. Probabilistic modeling of renewable energy source based on Spark platform with large-scale sample data. Int. Trans. Electr. Energy Syst. 2019, 29, e2759. [Google Scholar] [CrossRef]
- Mikkola, J.; Lund, P.D. Modeling flexibility and optimal use of existing power plants with large-scale variable renewable power schemes. Energy 2016, 112, 364–375. [Google Scholar] [CrossRef]
- Lauer, M.; Dotzauer, M.; Hennig, C.; Lehmann, M.; Nebel, E.; Postel, J.; Szarka, N.; Thrän, D. Flexible power generation scenarios for biogas plants operated in Germany: Impacts on economic viability and GHG emissions. Int. J. Energy Res. 2017, 41, 63–80. [Google Scholar] [CrossRef] [Green Version]
- Brouwer, A.S.; van den Broek, M.; Zappa, W.; Turkenburg, W.C.; Faaij, A. Least-cost options for integrating intermittent renewables in low-carbon power systems. Appl. Energy 2016, 161, 48–74. [Google Scholar] [CrossRef] [Green Version]
- Milligan, M.; Kirby, B. The Impact of Balancing Areas Size, Obligation Sharing, and Ramping Capability. In Proceedings of the WindPower 2007 Conference, Los Angeles, CA, USA, 3–5 June 2007; pp. 3–5. [Google Scholar]
- Abdilahi, A.M.; Mustafa, M.W.; Abujarad, S.Y.; Mustapha, M. Harnessing flexibility potential of flexible carbon capture power plants for future low carbon power systems. Renew. Sustain. Energy Rev. 2018, 81, 3101–3110. [Google Scholar] [CrossRef]
- Smith, J.C.; Milligan, M.R.; DeMeo, E.A.; Parsons, B. Utility wind integration and operating impact state of the art. IEEE Trans. Power Syst. 2007, 22, 900–908. [Google Scholar] [CrossRef]
- Oree, V.; Hassen, S.Z.S. A composite metric for assessing flexibility available in conventional generators of power systems. Appl. Energy 2016, 177, 683–691. [Google Scholar] [CrossRef]
- Hsieh, E.; Anderson, R. Grid flexibility: The quiet revolution. Electr. J. 2017, 30, 1–8. [Google Scholar] [CrossRef]
- Ela, E.; Milligan, M.; Bloom, A.; Botterud, A.; Townsend, A.; Levin, T.; Frew, B.A. Wholesale electricity market design with increasing levels of renewable generation: Incentivizing flexibility in system operations. Electr. J. 2016, 29, 51–60. [Google Scholar] [CrossRef] [Green Version]
- Lannoye, E.; Flynn, D.; O’Malley, M. Evaluation of power system flexibility. IEEE Trans. Power Syst. 2012, 27, 922–931. [Google Scholar] [CrossRef]
- Ma, J.; Silva, V.; Belhomme, R.; Kirschen, D.S.; Ochoa, L.F. Evaluating and planning flexibility in sustainable power systems. In Proceedings of the 2013 IEEE Power & Energy Society General Meeting, Vancouver, BC, Canada, 21–25 July 2013. [Google Scholar]
- Xie, J.; Wang, K.; Feng, D.; Zeng, D.; Li, Y.; Yue, D. A security-constrained flexible demand scheduling strategy for wind power accommodation. Int. Trans. Electr. Energy Syst. 2016, 26, 1171–1183. [Google Scholar] [CrossRef]
- Eser, P.; Singh, A.; Chokani, N.; Abhari, R.S. Effect of increased renewables generation on operation of thermal power plants. Appl. Energy 2016, 164, 723–732. [Google Scholar] [CrossRef]
- Razavi, S.E.; Javadi, M.S.; Nezhad, A.E. Mixed-integer nonlinear programming framework for combined heat and power units with nonconvex feasible operating region: Feasibility, optimality, and flexibility evaluation. Int. Trans. Electr. Energy Syst. 2019, 29, e2767. [Google Scholar] [CrossRef]
- Abujarad, S.Y.; Mustafa, M.W.; Jamian, J.J. Recent approaches of unit commitment in the presence of intermittent renewable energy resources: A review. Renew. Sustain. Energy Rev. 2017, 70, 215–223. [Google Scholar] [CrossRef]
- Huber, M.; Dimkova, D.; Hamacher, T. Integration of wind and solar power in Europe: Assessment of flexibility requirements. Energy 2014, 69, 236–246. [Google Scholar] [CrossRef] [Green Version]
- Kubik, M.L.; Coker, P.J.; Barlow, J.F. Increasing thermal plant flexibility in a high renewables power system. Appl. Energy 2015, 154, 102–111. [Google Scholar] [CrossRef]
- Alizadeh, M.I.; Moghaddam, M.P.; Amjady, N.; Siano, P.; Sheikh-El-Eslami, M.K. Flexibility in future power systems with high renewable penetration: A review. Renew. Sustain. Energy Rev. 2016, 57, 1186–1193. [Google Scholar] [CrossRef]
- Perez-Arriaga, I.J.; Batlle, C. Impacts of intermittent renewables on electricity generation system operation. Econ. Energy Environ. Policy 2012, 1, 3–18. [Google Scholar] [CrossRef] [Green Version]
- Delarue, E.D.; Luickx, P.J.; D’haeseleer, W.D. The actual effect of wind power on overall electricity generation costs and CO2 emissions. Energy Convers. Manag. 2009, 50, 1450–1456. [Google Scholar] [CrossRef]
- Thatte, A.A.; Xie, L. A Metric and Market Construct of Inter-Temporal Flexibility in Time-Coupled Economic Dispatch. IEEE Trans. Power Syst. 2016, 31, 3437–3446. [Google Scholar] [CrossRef]
- Denholm, P.; Hand, M. Grid flexibility and storage required to achieve very high penetration of variable renewable electricity. Energy Policy 2011, 39, 1817–1830. [Google Scholar] [CrossRef]
- De Vos, K.; Petoussis, A.G.; Driesen, J.; Belmans, R. Revision of reserve requirements following wind power integration in island power systems. Renew. Energy 2013, 50, 268–279. [Google Scholar] [CrossRef]
- Hong, L.; Lund, H.; Möller, B. The importance of flexible power plant operation for Jiangsu’s wind integration. Energy 2012, 41, 499–507. [Google Scholar] [CrossRef] [Green Version]
- Ma, J.; Silva, V.; Belhomme, R.; Kirschen, D.S.; Ochoa, L.F. Evaluating and Planning Flexibility in Sustainable Power Systems. IEEE Trans. Sustain. Energy 2013, 4, 200–209. [Google Scholar] [CrossRef] [Green Version]
- Abujarad, S.Y.; Mustafa, M.; Jamian, J.; Abdilahi, A. Flexibility quantification for thermal power generators using deterministic metric for high renewable energy penetration. In Proceedings of the 2016 IEEE International Conference on Power and Energy (PECon), Melaka, Malaysia, 28–29 November 2016; pp. 580–584. [Google Scholar]
- Yasuda, Y.; Årdal, A.R.; Huertas-Hernando, D.; Carlini, E.M.; Estanqueiro, A.; Flynn, D.; Gomez-Lazaro, E.; Holttinen, H.; Kiviluoma, J.; Van Hulle, F.; et al. Flexibility chart: Evaluation on diversity of flexibility in various areas. In Proceedings of the 12th International Workshop on Large-Scale Integration of Wind Power into Power Systems as well as on Transmission Networks for Offshore Wind Power Plants, London, UK, 22–24 October 2013. [Google Scholar]
- Nosair, H.; Bouffard, F. Reconstructing Operating Reserve: Flexibility for Sustainable Power Systems. IEEE Trans. Sustain. Energy 2015, 6, 1624–1637. [Google Scholar] [CrossRef]
- Lannoye, E.; Flynn, D.; O’Malley, M. Transmission, variable generation, and power system flexibility. IEEE Trans. Power Syst. 2015, 30, 57–66. [Google Scholar] [CrossRef]
- Electric Power Research Institute. Metrics for Quantifying Flexibility in Power System Planning; Electric Power Research Institute: Palo Alto, CA, USA, 2014. [Google Scholar]
- Brouwer, A.S.; van den Broek, M.; Seebregts, A.; Faaij, A. Operational flexibility and economics of power plants in future low-carbon power systems. Appl. Energy 2015, 156, 107–128. [Google Scholar] [CrossRef] [Green Version]
- Abujarad, S.Y.I.; Mustafa, M.W.; Jamian, J.J. Unit commitment problem solution in the presence of solar and wind power integration by an improved priority list method. In Proceedings of the 2016 6th International Conference on Intelligent and Advanced Systems (ICIAS), Kuala Lumpur, Malaysia, 15–17 August 2016; pp. 1–6. [Google Scholar]
- Joint Research Centre European Commission. Handbook on Constructing Composite Indicators: Methodology and User Guide; OECD Publishing: Paris, France, 2008. [Google Scholar]
- Saaty, R.W. The analytic hierarchy process—What it is and how it is used. Math. Model. 1987, 9, 161–176. [Google Scholar] [CrossRef] [Green Version]
- Saaty, T.L. What is the Analytic Hierarchy Process? In Mathematical Models for Decision Support; Springer: Berlin/Heidelberg, Germany, 1988; pp. 109–121. [Google Scholar]
- Alhamrouni, I.; Khairuddin, A.B.; Salem, M.; Ismail, B. Analytical hierarchy process for scheduling the priorities of the environmental factors in transmission lines maintenance. In Proceedings of the Energy Conversion (CENCON), 2015 IEEE Conference on, Johor Bahru, Malaysia, 19–20 October 2015; pp. 436–441. [Google Scholar]
- Saaty, T.L. Fundamentals of the Analytic Hierarchy Process. In The Analytic Hierarchy Process in Natural Resource and Environmental Decision Making; Springer: Berlin/Heidelberg, Germany, 2001; pp. 15–35. [Google Scholar]
- Grigg, C.; Wong, P.; Albrecht, P.; Allan, R.; Bhavaraju, M.; Billinton, R.; Chen, Q.; Fong, C.; Haddad, S.; Kuruganty, S.; et al. The IEEE Reliability Test System-1996. A report prepared by the Reliability Test System Task Force of the Application of Probability Methods Subcommittee. IEEE Trans. Power Syst. 1999, 14, 1010–1020. [Google Scholar] [CrossRef]
- Wang, C.; Shahidehpour, S.M. Effects of ramp-rate limits on unit commitment and economic dispatch. IEEE Trans. Power Syst. 1993, 8, 1341–1350. [Google Scholar] [CrossRef]
- Conejo, A.J.; Carrión, M.; Morales, J.M. Decision Making under Uncertainty in Electricity Markets; Springer: Berlin/Heidelberg, Germany, 2010; Volume 1. [Google Scholar]
Intensity of Importance on an Absolute Scale | Definition | Explanation |
---|---|---|
1 | Equal importance | The two criteria contribute equally to the objective |
3 | Moderate importance | Experience and judgement strongly favor one criterion over the other |
5 | Strong importance | Experience and judgement strongly favor one criterion over the other |
7 | Very strong importance | Very strongly favors one criterion over the other. Its dominance is demonstrated in practice |
9 | Extreme importance | The evidence favoring one criterion over another is of the highest possible order of affirmation |
2,4,6,8 | Intermediate importance between two adjacent values | When compromise is needed |
Unit Type | Unit Size (MW) | Units Range | No. of Units | RUR (MW/h) | RDR (MW/h) | OR (MW) | SUT (h) | SDT (h) | MUT (h) | MDT (h) | |
---|---|---|---|---|---|---|---|---|---|---|---|
Oil/Steam | 12 | 1–5 | 5 | 2.4 | 9.6 | 9.6 | 9.6 | 4 | 0 | 0 | 0 |
Oil/combustion turbine(CT) | 20 | 6–9 | 4 | 15.8 | 4.2 | 4.2 | 4.2 | 0 | 0 | 0 | 0 |
Coal/Steam | 76 | 10–13 | 4 | 15.2 | 38.5 | 60.8 | 60.8 | 12 | 2 | 3 | 1 |
Oil/Steam | 100 | 14–16 | 3 | 25 | 51 | 74 | 75 | 7 | 4 | 4 | 2 |
Coal/Steam | 155 | 17–20 | 4 | 54.25 | 55 | 78 | 100.75 | 11 | 3 | 5 | 2 |
Oil/Steam | 197 | 21–23 | 3 | 68.95 | 55 | 99 | 128.05 | 7 | 6 | 5 | 2 |
Coal/3 Steam | 350 | 24 | 1 | 140 | 70 | 120 | 210 | 12 | 5 | 8 | 3 |
Nuclear | 400 | 25–26 | 2 | 100 | 50.5 | 100 | 300 | NA | 5 | 8 | 4 |
Unit Type (Size—MW) | AWFM | ||
---|---|---|---|
Flexibility Index | Ranking | Ranking by Ma et al. [12] | |
Oil/Steam (O/S-12) | 0.2000 | 1 | 1 |
Oil/CT (O/CT-20) | 0.0525 | 8 | 8 |
Coal/Steam (C/S-76) | 0.1906 | 2 | 2 |
Oil/Steam (O/S-100) | 0.1796 | 3 | 3 |
Coal/Steam (C/S-155) | 0.1486 | 5 | 4 |
Oil/Steam (O/S-197) | 0.1463 | 6 | 5 |
Coal/3 Steam (C/S-350) | 0.1294 | 7 | 7 |
Nuclear (N-400) | 0.1523 | 4 | 6 |
Overall (26 units System) | 0.1526 | – | – |
Flexibility Indicator | Priority Vector (PV) | ||||
---|---|---|---|---|---|
1 | 1 | 3 | 3 | 0.375 | |
1 | 1 | 3 | 3 | 0.375 | |
0.333333 | 0.333333 | 1 | 1 | 0.125 | |
0.333333 | 0.333333 | 1 | 1 | 0.125 | |
CI = 0 | CR = 0 | λmax = 4 | ∑PV = 1 |
Unit Type (Capacity—MW) | Ranking | AWFM Flexibility Index |
---|---|---|
Oil/Steam (O/S-12) | 1 | 0.2000 |
Oil/CT (O/CT-20) | 9 | 0.0525 |
Coal/Steam (C/S-76) | 2 | 0.1906 |
Oil/Steam (O/S-100) | 4 | 0.1797 |
Coal/Steam (C/S-155) | 6 | 0.1487 |
Oil/Steam (O/S-197) | 7 | 0.1463 |
Coal/3 Steam (C/S-350) | 8 | 0.1294 |
Nuclear (N-400) | 5 | 0.1524 |
Selected IEEE Unit | 3 | 0.1875 |
Extended RTS-96 test system | 0.1762 |
U1 | U2 | U3 | U4 | U5 | U6 | U7 | U8 | U9 | U10 | |
---|---|---|---|---|---|---|---|---|---|---|
H1 | 455 | 177.26 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
H2 | 455 | 285.50 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
H3 | 455 | 368.23 | 0 | 0 | 25 | 0 | 0 | 0 | 0 | 0 |
H4 | 455 | 455 | 0 | 0 | 30.5 | 0 | 0 | 0 | 0 | 0 |
H5 | 455 | 366.54 | 0 | 130 | 25 | 0 | 0 | 0 | 0 | 0 |
H6 | 455 | 358.23 | 130 | 130 | 25 | 0 | 0 | 0 | 0 | 0 |
H7 | 455 | 408.23 | 130 | 130 | 25 | 0 | 0 | 0 | 0 | 0 |
H8 | 455 | 235.50 | 130 | 130 | 25 | 0 | 0 | 0 | 0 | 0 |
H9 | 455 | 150 | 101.21 | 119.63 | 25 | 0 | 0 | 0 | 0 | 0 |
H10 | 455 | 323.02 | 130 | 130 | 25 | 0 | 0 | 0 | 0 | 0 |
H11 | 455 | 290.86 | 130 | 130 | 25 | 0 | 0 | 0 | 0 | 0 |
H12 | 455 | 150 | 75.56 | 95.32 | 25 | 0 | 0 | 0 | 0 | 0 |
H13 | 455 | 150 | 21.12 | 43.72 | 25 | 0 | 0 | 0 | 0 | 0 |
H14 | 454.73 | 150 | 20 | 29.98 | 25 | 0 | 0 | 0 | 0 | 0 |
H15 | 366.07 | 150 | 0 | 0 | 25 | 0 | 0 | 0 | 0 | 0 |
H16 | 175.87 | 150 | 0 | 0 | 25 | 0 | 0 | 0 | 0 | 0 |
H17 | 311.70 | 150 | 0 | 0 | 25 | 0 | 0 | 0 | 0 | 0 |
H18 | 455 | 449.65 | 0 | 0 | 25 | 0 | 0 | 0 | 0 | 0 |
H19 | 455 | 407.88 | 0 | 0 | 25 | 0 | 0 | 0 | 0 | 0 |
H20 | 455 | 415.31 | 130 | 130 | 25 | 0 | 0 | 0 | 0 | 0 |
H21 | 455 | 405.66 | 130 | 130 | 25 | 0 | 0 | 0 | 0 | 0 |
H22 | 371.70 | 150 | 20 | 20 | 25 | 0 | 0 | 0 | 0 | 0 |
H23 | 204.47 | 150 | 20 | 20 | 25 | 0 | 0 | 0 | 0 | 0 |
H24 | 279.47 | 0 | 20 | 20 | 0 | 0 | 0 | 0 | 0 | 0 |
U1 | U2 | U3 | U4 | U5 | U6 | U7 | U8 | U9 | U10 | |
---|---|---|---|---|---|---|---|---|---|---|
H1 | 455 | 157.8046 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
H2 | 455 | 282.773 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
H3 | 455 | 382.729 | 0 | 0 | 0 | 0 | 0 | 10 | 0 | 0 |
H4 | 455 | 452.773 | 0 | 0 | 0 | 0 | 0 | 10 | 10 | 10 |
H5 | 455 | 455 | 0 | 0 | 0 | 0 | 0 | 39.81 | 10 | 10 |
H6 | 455 | 455 | 0 | 0 | 0 | 80 | 25 | 55 | 17.73 | 10 |
H7 | 455 | 455 | 0 | 130 | 0 | 52.73 | 25 | 10 | 10 | 10 |
H8 | 455 | 281.0227 | 0 | 130 | 0 | 20 | 25 | 0 | 0 | 0 |
H9 | 455 | 150 | 0 | 91.86 | 0 | 0 | 25 | 0 | 0 | 0 |
H10 | 455 | 356.2425 | 0 | 130 | 0 | 0 | 25 | 0 | 0 | 0 |
H11 | 455 | 300.4908 | 0 | 130 | 0 | 0 | 25 | 0 | 0 | 0 |
H12 | 425.0912 | 150 | 0 | 0 | 0 | 0 | 25 | 0 | 0 | 0 |
H13 | 342.32 | 150 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
H14 | 351.5836 | 150 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
H15 | 201.8323 | 150 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
H16 | 150.0912 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
H17 | 339.289 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
H18 | 455 | 0 | 130 | 130 | 0 | 80 | 25 | 40.72 | 10 | 10 |
H19 | 455 | 0 | 130 | 130 | 0 | 28.24 | 25 | 10 | 10 | 10 |
H20 | 455 | 0 | 130 | 130 | 162 | 80 | 25 | 55 | 38.03 | 10 |
H21 | 455 | 0 | 130 | 130 | 162 | 80 | 25 | 55 | 54.33 | 10 |
H22 | 374.289 | 0 | 20 | 20 | 25 | 0 | 0 | 0 | 0 | 0 |
H23 | 256.4713 | 0 | 0 | 0 | 25 | 0 | 0 | 0 | 0 | 0 |
H24 | 156.4713 | 0 | 0 | 0 | 25 | 0 | 0 | 0 | 0 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abujarad, S.; Mustafa, M.W.; Jamian, J.J.; Abdilahi, A.M.; De Kooning, J.D.M.; Desmet, J.; Vandevelde, L. An Adjusted Weight Metric to Quantify Flexibility Available in Conventional Generators for Low Carbon Power Systems. Energies 2020, 13, 5658. https://doi.org/10.3390/en13215658
Abujarad S, Mustafa MW, Jamian JJ, Abdilahi AM, De Kooning JDM, Desmet J, Vandevelde L. An Adjusted Weight Metric to Quantify Flexibility Available in Conventional Generators for Low Carbon Power Systems. Energies. 2020; 13(21):5658. https://doi.org/10.3390/en13215658
Chicago/Turabian StyleAbujarad, Saleh, Mohd Wazir Mustafa, Jasrul Jamani Jamian, Abdirahman M. Abdilahi, Jeroen D. M. De Kooning, Jan Desmet, and Lieven Vandevelde. 2020. "An Adjusted Weight Metric to Quantify Flexibility Available in Conventional Generators for Low Carbon Power Systems" Energies 13, no. 21: 5658. https://doi.org/10.3390/en13215658
APA StyleAbujarad, S., Mustafa, M. W., Jamian, J. J., Abdilahi, A. M., De Kooning, J. D. M., Desmet, J., & Vandevelde, L. (2020). An Adjusted Weight Metric to Quantify Flexibility Available in Conventional Generators for Low Carbon Power Systems. Energies, 13(21), 5658. https://doi.org/10.3390/en13215658